243,567 research outputs found

    Interaction Histories and Short-Term Memory: Enactive Development of Turn-Taking Behaviours in a Childlike Humanoid Robot

    Get PDF
    In this article, an enactive architecture is described that allows a humanoid robot to learn to compose simple actions into turn-taking behaviours while playing interaction games with a human partner. The robot’s action choices are reinforced by social feedback from the human in the form of visual attention and measures of behavioural synchronisation. We demonstrate that the system can acquire and switch between behaviours learned through interaction based on social feedback from the human partner. The role of reinforcement based on a short-term memory of the interaction was experimentally investigated. Results indicate that feedback based only on the immediate experience was insufficient to learn longer, more complex turn-taking behaviours. Therefore, some history of the interaction must be considered in the acquisition of turn-taking, which can be efficiently handled through the use of short-term memory.Peer reviewedFinal Published versio

    Mechanisms for the generation and regulation of sequential behaviour

    Get PDF
    A critical aspect of much human behaviour is the generation and regulation of sequential activities. Such behaviour is seen in both naturalistic settings such as routine action and language production and laboratory tasks such as serial recall and many reaction time experiments. There are a variety of computational mechanisms that may support the generation and regulation of sequential behaviours, ranging from those underlying Turing machines to those employed by recurrent connectionist networks. This paper surveys a range of such mechanisms, together with a range of empirical phenomena related to human sequential behaviour. It is argued that the empirical phenomena pose difficulties for most sequencing mechanisms, but that converging evidence from behavioural flexibility, error data arising from when the system is stressed or when it is damaged following brain injury, and between-trial effects in reaction time tasks, point to a hybrid symbolic activation-based mechanism for the generation and regulation of sequential behaviour. Some implications of this view for the nature of mental computation are highlighted

    Consciosusness in Cognitive Architectures. A Principled Analysis of RCS, Soar and ACT-R

    Get PDF
    This report analyses the aplicability of the principles of consciousness developed in the ASys project to three of the most relevant cognitive architectures. This is done in relation to their aplicability to build integrated control systems and studying their support for general mechanisms of real-time consciousness.\ud To analyse these architectures the ASys Framework is employed. This is a conceptual framework based on an extension for cognitive autonomous systems of the General Systems Theory (GST).\ud A general qualitative evaluation criteria for cognitive architectures is established based upon: a) requirements for a cognitive architecture, b) the theoretical framework based on the GST and c) core design principles for integrated cognitive conscious control systems

    Development of a Semi-Autonomous Robotic System to Assist Children with Autism in Developing Visual Perspective Taking Skills

    Get PDF
    Robot-assisted therapy has been successfully used to help children with Autism Spectrum Condition (ASC) develop their social skills, but very often with the robot being fully controlled remotely by an adult operator. Although this method is reliable and allows the operator to conduct a therapy session in a customised child-centred manner, it increases the cognitive workload on the human operator since it requires them to divide their attention between the robot and the child to ensure that the robot is responding appropriately to the child's behaviour. In addition, a remote-controlled robot is not aware of the information regarding the interaction with children (e.g., body gesture and head pose, proximity etc) and consequently it does not have the ability to shape live HRIs. Further to this, a remote-controlled robot typically does not have the capacity to record this information and additional effort is required to analyse the interaction data. For these reasons, using a remote-controlled robot in robot-assisted therapy may be unsustainable for long-term interactions. To lighten the cognitive burden on the human operator and to provide a consistent therapeutic experience, it is essential to create some degrees of autonomy and enable the robot to perform some autonomous behaviours during interactions with children. Our previous research with the Kaspar robot either implemented a fully autonomous scenario involving pairs of children, which then lacked the often important input of the supervising adult, or, in most of our research, has used a remote control in the hand of the adult or the children to operate the robot. Alternatively, this paper provides an overview of the design and implementation of a robotic system called Sense- Think-Act which converts the remote-controlled scenarios of our humanoid robot into a semi-autonomous social agent with the capacity to play games autonomously (under human supervision) with children in the real-world school settings. The developed system has been implemented on the humanoid robot Kaspar and evaluated in a trial with four children with ASC at a local specialist secondary school in the UK where the data of 11 Child-Robot Interactions (CRIs) was collected. The results from this trial demonstrated that the system was successful in providing the robot with appropriate control signals to operate in a semi-autonomous manner without any latency, which supports autonomous CRIs, suggesting that the proposed architecture appears to have promising potential in supporting CRIs for real-world applications.Peer reviewe

    A motion system for social and animated robots

    Get PDF
    This paper presents an innovative motion system that is used to control the motions and animations of a social robot. The social robot Probo is used to study Human-Robot Interactions (HRI), with a special focus on Robot Assisted Therapy (RAT). When used for therapy it is important that a social robot is able to create an "illusion of life" so as to become a believable character that can communicate with humans. The design of the motion system in this paper is based on insights from the animation industry. It combines operator-controlled animations with low-level autonomous reactions such as attention and emotional state. The motion system has a Combination Engine, which combines motion commands that are triggered by a human operator with motions that originate from different units of the cognitive control architecture of the robot. This results in an interactive robot that seems alive and has a certain degree of "likeability". The Godspeed Questionnaire Series is used to evaluate the animacy and likeability of the robot in China, Romania and Belgium

    Prediction of intent in robotics and multi-agent systems.

    Get PDF
    Moving beyond the stimulus contained in observable agent behaviour, i.e. understanding the underlying intent of the observed agent is of immense interest in a variety of domains that involve collaborative and competitive scenarios, for example assistive robotics, computer games, robot-human interaction, decision support and intelligent tutoring. This review paper examines approaches for performing action recognition and prediction of intent from a multi-disciplinary perspective, in both single robot and multi-agent scenarios, and analyses the underlying challenges, focusing mainly on generative approaches

    The normativity of code as law: towards input legitimacy

    Get PDF
    In the debate on how the new information and communication technologies impact on democratic politics the role played by the digital architecture seems to be surprisingly underrated. In particular, while a lot of attention has been paid to the possibilities that new technologies open up to democratic theory, few works have attempted to look at how democracy may help in shaping technologies. By adopting as a starting point the approach known as β€˜code as law’, the paper aims at two objectives: to re-affirm the importance of discussing normative principles to guide the process of code writing in order to reinvigorate the debate; to claim the importance of input reasons when deciding which principles should be chosen. After having remarked that code is relevant for establishing democratic norms, the paper briefly tackles with the main attempts by European scholars to deal with this issue. Then, a couple of practical examples of how code impacts on democratic rights are sketched out. In the last section of the paper a shift from an output-based approach to the legitimacy of code to an input-based is openly advocated: an inquiry into the legitimacy of code should focus on its production

    Cognitive Modelling in HCI Research

    Get PDF
    • …
    corecore