137 research outputs found

    Multi-Factor Authentication: A Survey

    Get PDF
    Today, digitalization decisively penetrates all the sides of the modern society. One of the key enablers to maintain this process secure is authentication. It covers many different areas of a hyper-connected world, including online payments, communications, access right management, etc. This work sheds light on the evolution of authentication systems towards Multi-Factor Authentication (MFA) starting from Single-Factor Authentication (SFA) and through Two-Factor Authentication (2FA). Particularly, MFA is expected to be utilized for human-to-everything interactions by enabling fast, user-friendly, and reliable authentication when accessing a service. This paper surveys the already available and emerging sensors (factor providers) that allow for authenticating a user with the system directly or by involving the cloud. The corresponding challenges from the user as well as the service provider perspective are also reviewed. The MFA system based on reversed Lagrange polynomial within Shamir’s Secret Sharing (SSS) scheme is further proposed to enable more flexible authentication. This solution covers the cases of authenticating the user even if some of the factors are mismatched or absent. Our framework allows for qualifying the missing factors by authenticating the user without disclosing sensitive biometric data to the verification entity. Finally, a vision of the future trends in MFA is discussed.Peer reviewe

    SoK: Inference Attacks and Defenses in Human-Centered Wireless Sensing

    Full text link
    Human-centered wireless sensing aims to understand the fine-grained environment and activities of a human using the diverse wireless signals around her. The wireless sensing community has demonstrated the superiority of such techniques in many applications such as smart homes, human-computer interactions, and smart cities. Like many other technologies, wireless sensing is also a double-edged sword. While the sensed information about a human can be used for many good purposes such as enhancing life quality, an adversary can also abuse it to steal private information about the human (e.g., location, living habits, and behavioral biometric characteristics). However, the literature lacks a systematic understanding of the privacy vulnerabilities of wireless sensing and the defenses against them. In this work, we aim to bridge this gap. First, we propose a framework to systematize wireless sensing-based inference attacks. Our framework consists of three key steps: deploying a sniffing device, sniffing wireless signals, and inferring private information. Our framework can be used to guide the design of new inference attacks since different attacks can instantiate these three steps differently. Second, we propose a defense-in-depth framework to systematize defenses against such inference attacks. The prevention component of our framework aims to prevent inference attacks via obfuscating the wireless signals around a human, while the detection component aims to detect and respond to attacks. Third, based on our attack and defense frameworks, we identify gaps in the existing literature and discuss future research directions
    corecore