122,641 research outputs found

    Collaboration through deliberative dialogues

    Get PDF
    In a multi-agent system, a group of individ- uals interact in a social context in order to boost their capabilities and enhance global per- formance. Each individual's action repertoire may be reduced, but it's social capability allows it to interact with other agents and obtain collab- oration. This work offers an alternative for knowledge representation in a system of collaborative BDI agents and presents an interaction protocol based on dialogues. The capacity to interact affects the behavioral model of a BDI agent that must consider the possibility of offering and soliciting collaboration. Thus, we propose an algorithm that models the behavior of a collaborative BDI agent.Facultad de Informátic

    Multi-Behavior Agent Model for Supply Chain Management

    Get PDF
    Recent economic and international threats to occidental industries have encouraged companies to rethink their planning systems. Due to consolidation, the development of integrated supply chains and the use of inter-organizational information systems have increased business interdependencies and the need for collaboration. Thus, agility and the ability to deal quickly with disturbances in supply chains are critical to maintain overall performance. In order to develop tools to increase the agility of the supply chain and to promote the collaborative management of such disturbances, agent-based technology takes advantage of the ability of agents to make autonomous decisions in a distributed network. This paper proposes a multi-behavior agent model using different decision making approaches in a context where planning decisions are supported by a distributed advanced planning system (d-APS). The implementation of this solution is realized through the FOR@C experimental agent-based platform, dedicated to the supply chain planning for the forest products industry

    Multi-behavior agent model for supply chain management

    Get PDF
    Recent economic and international threats to occidental industries have encouraged companies to rethink their planning systems. Due to consolidation, the development of integrated supply chains and the use of inter-organizational information systems have increased business interdependencies and the need for collaboration. Thus, agility and the ability to deal quickly with disturbances in supply chains are critical to maintain overall performance. In order to develop tools to increase the agility of the supply chain and to promote the collaborative management of such disturbances, agent-based technology takes advantage of the ability of agents to make autonomous decisions in a distributed network. This paper proposes a multi-behavior agent model using different decision making approaches in a context where planning decisions are supported by a distributed advanced planning system (d-APS). The implementation of this solution is realized through the FOR@C experimental agent-based platform, dedicated to the supply chain planning for the forest products industry

    Arena: A General Evaluation Platform and Building Toolkit for Multi-Agent Intelligence

    Full text link
    Learning agents that are not only capable of taking tests, but also innovating is becoming a hot topic in AI. One of the most promising paths towards this vision is multi-agent learning, where agents act as the environment for each other, and improving each agent means proposing new problems for others. However, existing evaluation platforms are either not compatible with multi-agent settings, or limited to a specific game. That is, there is not yet a general evaluation platform for research on multi-agent intelligence. To this end, we introduce Arena, a general evaluation platform for multi-agent intelligence with 35 games of diverse logics and representations. Furthermore, multi-agent intelligence is still at the stage where many problems remain unexplored. Therefore, we provide a building toolkit for researchers to easily invent and build novel multi-agent problems from the provided game set based on a GUI-configurable social tree and five basic multi-agent reward schemes. Finally, we provide Python implementations of five state-of-the-art deep multi-agent reinforcement learning baselines. Along with the baseline implementations, we release a set of 100 best agents/teams that we can train with different training schemes for each game, as the base for evaluating agents with population performance. As such, the research community can perform comparisons under a stable and uniform standard. All the implementations and accompanied tutorials have been open-sourced for the community at https://sites.google.com/view/arena-unity/
    • …
    corecore