9,137 research outputs found

    End-to-End QoS Support for a Medical Grid Service Infrastructure

    No full text
    Quality of Service support is an important prerequisite for the adoption of Grid technologies for medical applications. The GEMSS Grid infrastructure addressed this issue by offering end-to-end QoS in the form of explicit timeliness guarantees for compute-intensive medical simulation services. Within GEMSS, parallel applications installed on clusters or other HPC hardware may be exposed as QoS-aware Grid services for which clients may dynamically negotiate QoS constraints with respect to response time and price using Service Level Agreements. The GEMSS infrastructure and middleware is based on standard Web services technology and relies on a reservation based approach to QoS coupled with application specific performance models. In this paper we present an overview of the GEMSS infrastructure, describe the available QoS and security mechanisms, and demonstrate the effectiveness of our methods with a Grid-enabled medical imaging service

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial

    Response-Time Analysis of ROS 2 Processing Chains Under Reservation-Based Scheduling

    Get PDF
    Bounding the end-to-end latency of processing chains in distributed real-time systems is a well-studied problem, relevant in multiple industrial fields, such as automotive systems and robotics. Nonetheless, to date, only little attention has been given to the study of the impact that specific frameworks and implementation choices have on real-time performance. This paper proposes a scheduling model and a response-time analysis for ROS 2 (specifically, version "Crystal Clemmys" released in December 2018), a popular framework for the rapid prototyping, development, and deployment of robotics applications with thousands of professional users around the world. The purpose of this paper is threefold. Firstly, it is aimed at providing to robotic engineers a practical analysis to bound the worst-case response times of their applications. Secondly, it shines a light on current ROS 2 implementation choices from a real-time perspective. Finally, it presents a realistic real-time scheduling model, which provides an opportunity for future impact on the robotics industry

    Predictable migration and communication in the Quest-V multikernal

    Full text link
    Quest-V is a system we have been developing from the ground up, with objectives focusing on safety, predictability and efficiency. It is designed to work on emerging multicore processors with hardware virtualization support. Quest-V is implemented as a ``distributed system on a chip'' and comprises multiple sandbox kernels. Sandbox kernels are isolated from one another in separate regions of physical memory, having access to a subset of processing cores and I/O devices. This partitioning prevents system failures in one sandbox affecting the operation of other sandboxes. Shared memory channels managed by system monitors enable inter-sandbox communication. The distributed nature of Quest-V means each sandbox has a separate physical clock, with all event timings being managed by per-core local timers. Each sandbox is responsible for its own scheduling and I/O management, without requiring intervention of a hypervisor. In this paper, we formulate bounds on inter-sandbox communication in the absence of a global scheduler or global system clock. We also describe how address space migration between sandboxes can be guaranteed without violating service constraints. Experimental results on a working system show the conditions under which Quest-V performs real-time communication and migration.National Science Foundation (1117025

    An Analytical Solution for Probabilistic Guarantees of Reservation Based Soft Real-Time Systems

    Full text link
    We show a methodology for the computation of the probability of deadline miss for a periodic real-time task scheduled by a resource reservation algorithm. We propose a modelling technique for the system that reduces the computation of such a probability to that of the steady state probability of an infinite state Discrete Time Markov Chain with a periodic structure. This structure is exploited to develop an efficient numeric solution where different accuracy/computation time trade-offs can be obtained by operating on the granularity of the model. More importantly we offer a closed form conservative bound for the probability of a deadline miss. Our experiments reveal that the bound remains reasonably close to the experimental probability in one real-time application of practical interest. When this bound is used for the optimisation of the overall Quality of Service for a set of tasks sharing the CPU, it produces a good sub-optimal solution in a small amount of time.Comment: IEEE Transactions on Parallel and Distributed Systems, Volume:27, Issue: 3, March 201

    Multi-resource management in embedded real-time systems

    Get PDF
    This thesis addresses the problem of online multi-resource management in embedded real-time systems. It focuses on three research questions. The first question concentrates on how to design an efficient hierarchical scheduling framework for supporting independent development and analysis of component based systems, to provide temporal isolation between components. The second question investigates how to change the mapping of resources to tasks and components during run-time efficiently and predictably, and how to analyze the latency of such a system mode change in systems comprised of several scalable components. The third question deals with the scheduling and analysis of a set of parallel-tasks with real-time constraints which require simultaneous access to several different resources. For providing temporal isolation we chose a reservation-based approach. We first focused on processor reservations, where timed events play an important role. Common examples are task deadlines, periodic release of tasks, budget replenishment and budget depletion. Efficient timer management is therefore essential. We investigated the overheads in traditional timer management techniques and presented a mechanism called Relative Timed Event Queues (RELTEQ), which provides an expressive set of primitives at a low processor and memory overhead. We then leveraged RELTEQ to create an efficient, modular and extensible design for enhancing a real-time operating system with periodic tasks, polling, idling periodic and deferrable servers, and a two-level fixed-priority Hierarchical Scheduling Framework (HSF). The HSF design provides temporal isolation and supports independent development of components by separating the global and local scheduling, and allowing each server to define a dedicated scheduler. Furthermore, the design addresses the system overheads inherent to an HSF and prevents undesirable interference between components. It limits the interference of inactive servers on the system level by means of wakeup events and a combination of inactive server queues with a stopwatch queue. Our implementation is modular and requires only a few modifications of the underlying operating system. We then investigated scalable components operating in a memory-constrained system. We first showed how to reduce the memory requirements in a streaming multimedia application, based on a particular priority assignment of the different components along the processing chain. Then we investigated adapting the resource provisions to tasks during runtime, referred to as mode changes. We presented a novel mode change protocol called Swift Mode Changes, which relies on Fixed Priority with Deferred preemption Scheduling to reduce the mode change latency bound compared to existing protocols based on Fixed Priority Preemptive Scheduling. We then presented a new partitioned parallel-task scheduling algorithm called Parallel-SRP (PSRP), which generalizes MSRP for multiprocessors, and the corresponding schedulability analysis for the problem of multi-resource scheduling of parallel tasks with real-time constraints. We showed that the algorithm is deadlock-free, derived a maximum bound on blocking, and used this bound as a basis for a schedulability test. We then demonstrated how PSRP can exploit the inherent parallelism of a platform comprised of multiple heterogeneous resources. Finally, we presented Grasp, which is a visualization toolset aiming to provide insight into the behavior of complex real-time systems. Its flexible plugin infrastructure allows for easy extension with custom visualization and analysis techniques for automatic trace verification. Its capabilities include the visualization of hierarchical multiprocessor systems, including partitioned and global multiprocessor scheduling with migrating tasks and jobs, communication between jobs via shared memory and message passing, and hierarchical scheduling in combination with multiprocessor scheduling. For tracing distributed systems with asynchronous local clocks Grasp also supports the synchronization of traces from different processors during the visualization and analysis
    • ā€¦
    corecore