166 research outputs found

    INTEGRATED HUB LOCATION AND CAPACITATED VEHICLE ROUTING PROBLEM OVER INCOMPLETE HUB NETWORKS

    Get PDF
    Hub location problem is one of the most important topics encountered in transportation and logistics management. Along with the question of where to position hub facilities, how routes are determined is a further challenging problem. Although these two problems are often considered separately in the literature, here, in this study, the two are analyzed together. Firstly, we relax the restriction that a vehicle serves between each demand center and hub pair and propose a mixed-integer mathematical model for the single allocation p-hub median and capacitated vehicle routing problem with simultaneous pick-up and delivery. Moreover, while many studies in hub location problem literature assume that there is a complete hub network structure, we also relax this assumption and present the aforementioned model over incomplete hub networks. Computational analyses of the proposed models were conducted on various instances on the Turkish network. Results indicate that the different capacity levels of vehicles have an important impact on optimal hub locations, hub arc networks, and routing design

    METAHEURISTICS FOR HUB LOCATION MODELS

    Get PDF
    In this research, we propose metaheuristics for solving two p-hub median problems.. The first p-hub median problem, which is NP-hard, is the uncapacitated single p-hub median problem (USApHMP). In this problem, metaheuristics such as genetic algorithms, simulated annealing and tabu search, are applied in different types of representations. Caching is also applied to speed up computational time of the algorithms. The results clearly demonstrate that tabu search with a permutation solution representation, augmented with caching is the highest performing method, both in terms of solution quality and computational time among these algorithms for the USApHMP. We also investigate the performance of hybrid metaheuristics, formed by path-relinking augmentation of the three base algorithms (genetic algorithms, simulated annealing and tabu search). The results indicate that hybridrization with path-relinking improvees the performance of base algorithms except tabu search since a good base metaheuristic does not require path-relinking. For the second p-hub median problem, the NP-hard uncapacitated multiple p-hub median problem (UMApHMP), we proposed Multiple TS. We identify multiple nodes using the convex hull and methods derived from the tabu search for the USApMHP. We find optimal allocations using the Single Reallocation Exchange procedure, developed for the USApHMP. The results show that implementing tabu search with a geometric interpretation allows nearly all optimal solutions to be found

    A heuristic approach for multi-product capacitated single-allocation hub location problems

    Get PDF
    Tese de mestrado, Estatística e Investigação Operacional, Universidade de Lisboa, Faculdade de Ciências, 2015Em redes onde o fluxo entre nodos é muito elevado (como pode ser o caso do transporte de pessoas e mercadorias ou até mesmo fluxo de dados numa rede), torna-se menos dispendioso criar pontos onde se concentram os fluxos provenientes das diferentes origens para depois serem consolidados e redistribuídos até aos destinos. A esses pontos dá-se o nome de hubs. O problema de localização de hubs consiste na localização de hubs numa rede e na alocação de todos os nodos da rede a esses hubs, de modo a que se possa encaminhar os fluxos entre os pares origem-destino a menos que sejam hubs. A rede constituída pelos hubs é normalmente definida como completa e não se permitem ligações diretas entre os pares origem-destino. Para além disso, assume-se que existe um factor de desconto para o fluxo que circula entre hubs. Neste tipo de redes (hub-and-spoke networks) podem aparecer duas variantes, no que diz respeito à alocação dos nodos aos hubs: single-allocation e multiple-allocation. No primeiro caso, permite-se apenas uma ligação de cada nodo não hub a um hub de modo a que todo o fluxo com origem e destino a cada nodo saia e chegue a esse nodo através de apenas um hub. No caso em que se tem multiple-allocation, cada nodo poderá ser afecto a mais do que um hub e o fluxo que chega e sai desse nodo poderá usar mais do que um hub. Algumas variantes que se poderão considerar para este problema incluem restrições de capacidade nos hubs (restrições que limitam a capacidade de um hub processar uma certa quantidade de fluxo de origem, limitações na capacidade total, limitações no processamento de fluxo que sai do hub, etc.), restrições de capacidade nos arcos, problemas multi-periódicos, presença de incerteza, o número de hubs ser fixo, o tipo de objectivo (minimizar custos, minimizar distâncias entre hubs, etc.) entre outras. A necessidade de aproximar este tipo de problemas aos casos que se observam no mundo real leva à inclusão de cada vez mais restrições dando origem a mais variantes do problema. Neste trabalho, será abordado o problema de localização de hubs na variante single-Allocation, com restrições de capacidade em relação ao fluxo que cada hub é capaz de processar. Para além disso, considera-se fluxos relativos a mais do que um tipo de produto. Este problema é designado por Problema Multi-produto de Localização de Hubs com Capacidade1. Cada hub poderá ser dedicado a processar apenas um tipo de produto, poderá processar mais do que um, ou mesmo todos. A rede de hubs é completa para cada produto mas, no entanto, se se considerar a rede de hubs para todos os produtos, esta poderá não ser completa. Como constatado em Correia et al. [17], no caso em que cada hub processa todos os tipos de produto, resolver o problema multi-produto ao invés de se resolver vários problemas, um para cada produto em separado, dá origem a melhores resultados. A complexidade inerente a este tipo de problemas leva a que sejam classificados como problemas NP-Hard pois não existem algoritmos que sejam capazes de os resolver em tempo polinomial. Por esta razão faz sentido desenvolver algoritmos heurísticos de modo a se conseguir obter, em tempo útil, soluções para instâncias maiores do problema . Como referido em Meyer et al. [51], em problemas de localização de hubs, duas soluções com valores objectivo muito semelhantes poderão ser estruturalmente muito diferentes, e portanto, através um mecanismo de pesquisa local poderá ser muito difícil a passagem de uma boa solução para outra melhor. Por esta razão, neste trabalho opta-se por uma heurística que se baseia num método em que se constroem soluções repetidamente. Para a construção das soluções, considerando que um processo de construção do tipo Greedy poderia dar origem a um número limitado de soluções e que as componentes da solução que são escolhidas por último são as piores, optou-se pelo desenvolvimento de um algoritmo de Ant Colony Optimization (ACO). Esta meta-heurística baseia-se no comportamento apresentado pelas formigas quando estas procuram alimento. Quando uma formiga deixa a colónia em busca de alimento, no seu trajeto, deposita um químico (feromona) que pode ser detectado por outras formigas. Quanto maior a concentração de feromona, maior a atração de cada formiga por esse trajeto e, portanto, os trajetos com maiores concentrações de feromonas serão percorridos por mais formigas. Por outro lado, se o caminho de ida e volta até ao alimento for mais curto, mais vezes será percorrido e maior será a concentração de feromona nesse caminho. O resultado destes dois tipos de reforço positivo nas concentrações de feromona nos trajetos percorridos pelas formigas, aliados ao facto de que existe evaporação do químico (a concentração de feromona diminui nos caminhos menos percorridos ao longo do tempo) dá origem aos \carreirinhos" de formigas que se podem observar na natureza e que normalmente representam o caminho mais curto entre o alimento e a Colónia de formigas. Considere-se o problema em questão em que se tem n nodos e p produtos. Para a representação das soluções, em vez de se considerar uma matriz binária n χ n χ p, onde o valor 1 representa uma afetação, considerou-se uma matriz n χ p, em que cada entrada representa, para cada produto, o hub ao qual o nodo foi afecto. O caso em que um nodo é afecto a si mesmo indica que esse nodo é hub para o produto correspondente. Este tipo de representação permite reduzir o tamanho da matriz e diminuir o uso da memória computacional. Antes da construção de uma solução, é aplicado um pré-processamento que vai evitar, com base nas restrições do problema, que certas componentes da solução sejam consideradas durante o processo de construção da solução. Deste modo, reduz-se o espaço de procura de soluções e algum esforço computacional. Para a construção de uma solução, escolhe-se o tamanho da colonia (o número de formigas que pertencem à colónia) e cada formiga vai escolhendo, sucessivamente, componentes da solução através de uma regra pseudo-aleatória onde algumas componentes da solução são escolhidas de um modo greedy e outras são escolhidas através de roulette wheel selection. A cada componente da solução é atribuído um valor inicial de feromona e, à medida que cada formiga vai adicionando componentes à solução, o valor da feromona associado à componente adicionada vai decrescendo, o que resulta na diminuição da probabilidade de que essa componente seja escolhida pela próxima formiga, dando origem à diversificação do conjunto de soluções construído por cada colónia. No fim, depois de todas as formigas terem construído uma solução, escolhe-se a melhor solução e reforça-se a concentração de feromona na melhor solução construída pela colónia. Se, por acaso, uma formiga der origem a uma solução não admissível, a solução construída por essa formiga não é considerada. Para mais detalhe em relação a este processo consultar Dorigo et al. [20]. Este tipo de algoritmo permite a inclusão de métodos de pesquisa local de modo a que a solução obtida por cada colónia seja melhorada. Com o objectivo de obter um algoritmo mais eficiente, escolheu-se incluir esta possibilidade e procedeu-se ao reforço da concentração de feromona após feita uma pesquisa local. Na pesquisa local efectuada, usaram-se três tipos de vizinhança. Um deles fecha os hubs dedicados que só servem a si próprios e realoca-os a outros já abertos para esse mesmo produto. Outro, escolhe aleatoriamente um nodo alocado a um hub dedicado para um dado produto e realoca-o a outro hub dedicado ao mesmo produto. Um terceiro, escolhe um hub aleatoriamente e transforma-o num nodo, realocando-o a outro hub dedicado ao mesmo tipo de produto. De modo a obter soluções iniciais melhores, explora-se a possibilidade de atribuir valores iniciais de feromona mais altos às componentes de solução pertencentes à solução da relaxação linear, na proporção do valor correspondente no caso das variáveis 0-1. Uma outra variação explorada consiste em fazer o reforço do valor de feromona às componentes da solução, apenas quando esta é a melhor de todas encontrada até ao momento, permitindo que haja evaporação de certas componentes de solução que poderão estar a ser escolhidas consecutivamente e permitindo que se escape mais facilmente de óptimos locais. Após implementação do algoritmo procede-se à fase dos testes computacionais em instâncias do problema com 10, 20, 25 e 40 nodos, 1, 2 e 3 produtos e hubs que processam 1, 2 e 3 produtos. As instâncias usadas nos testes computacionais pertencem ao Australian Post data set e foram adaptados por Correia et al. [17] de modo a que se tivesse dados para mais do que um tipo de produto.In this thesis, an heuristic procedure is proposed for the the multi-product capacitated single-allocation hub location problem. When addressing a problem in which it is necessary to determine the transportation of large commodity flows between many origin-destination (O-D) pairs, instead of using direct links, it becomes more efficient to design the networks in such a way that some of the nodes become consolidation centers or hubs. The Multi-Product Capacitated Single-Allocation Hub Location Problem (MP-CSAHLP according to Correia et al. [17]), is a NP-Hard problem in which several types of ow are considered, making it possible to consider the case when multiple types of products are to be shipped between each O-D pair. It can be seen as an extension of the classical Capacitated Single-Allocation Hub Location Problem. In the problem investigated in this work, no more than one hub can be located in each node and the hubs can be either dedicated (each hub can only handle one type of product) or non-dedicated (one hub can handle more than one type product). The hubs have capacity limitations regarding the incoming flow. Furthermore, the hub network is complete for each product but, when considering the hub network as a whole, it does not necessarily have to be complete. The goal is to locate the hubs in the network, allocate the non-hub nodes to the opened hubs and route the flow between each O-D pair. The objective is to minimize the total ow routing cost plus the setup costs of the hubs and costs of preparing the hubs to handle the different types of products. In order to obtain feasible solutions to the above problem, an Ant Colony Optimization procedure is proposed, which is a constructive, population-based meta-heuristic based in the foraging behavior of ants. Indirect communication between the ants through pheromones reflects the colony search experience. High-quality solutions are found as an outcome of the global cooperation among all the ants of the colony. A preprocessing procedure is also proposed in which some solution components are forbidden based on the problems restrictions. Such preprocessing reduces the search space and thus may reduce the computational effort. The proposed heuristic uses a single ant colony, which simultaneously chooses the hubs and allocates the nodes to the hubs. Once these solutions are found, the routing of the flow is computed in a short amount of time, using the optimization models for the MP-CSAHLP in which some variables (location and allocation) are fixed. The results show that the proposed heuristic has the potential to find good quality solutions for the MP-CSAHLP and that its performance can be improved with finer parameter tuning, longer runs and more intense local search

    A tabu-search based heuristic for the hub covering problem over incomplete hub networks

    Get PDF
    Cataloged from PDF version of article.Hub location problems deal with finding the location of hub facilities and with the allocation of demand nodes to these located hub facilities. In this paper, we study the single allocation hub covering problem over incomplete hub networks and propose an integer programming formulation to this end. The aim of our model is to find the location of hubs, the hub links to be established between the located hubs, and the allocation of non-hub nodes to the located hub nodes such that the travel time between any origin–destination pair is within a given time bound. We present an efficient heuristic based on tabu search and test the performance of our heuristic on the CAB data set and on the Turkish network

    GRASP Metaheuristic for Multiple Allocation p-Hub Location Problem

    Get PDF
    Hub Location Problems (HLPs), belonging to the field of location theory, have been area of much research over the past two decades. This is due, in large measure, to the applications of hub and spoke networks in practice. Among the most classical versions of HLPs are p-hub location problems (p-HLPs), p-hub location problems are one of the most well studied variants of hub location literature. The primary goal of these models is to allocate p hub facilities in a hub and spoke network so as to concentrate flows (demands) to benefit from economies of scale in cost of transportation. The application of p-hub networks extends beyond the field of telecommunication and includes air freight systems, postal delivery systems and airline industries and several transportation related systems. p-HLPs constitute a challenging class of HLPs and are known to be NP-hard. Several solution approaches have been developed from exact solutions using integer programming techniques to the development of metaheuristics. Even though metaheuristic algorithms cannot guarantee optimality, given complexity of large scale HLPs, they are being used for solving these problems. In this thesis, we focus on the multiple allocation uncapacitated p-hub location problem. Four solution algorithms will be proposed to this problem for solving the Australian Postal (AP) data instances. We start with a very simple algorithm and continue with more complicated one in order to present an efficient high quality feasible solution and to assess the impact of the quality of initial feasible solution on local improvement phase. Computational results from the different algorithms were compared to exact solutions to track the efficiency of the proposed algorithms

    A metaheuristic and simheuristic approach for the p-Hub median problem from a telecommunication perspective

    Get PDF
    Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2018.Avanços recentes no setor das telecomunicações oferecem grandes oportunidades para cidadãos e organizações em um mundo globalmente conectado, ao mesmo tempo em que surge um vasto número de desafios complexos que os engenheiros devem enfrentar. Alguns desses desafios podem ser modelados como problemas de otimização. Alguns exemplos incluem o problema de alocação de recursos em redes de comunicações, desenho de topologias de rede que satisfaça determinadas propriedades associadas a requisitos de qualidade de serviço, sobreposição de redes multicast e outros recursos importantes para comunicação de origem a destino. O primeiro objetivo desta tese é fornecer uma revisão sobre como as metaheurísticas têm sido usadas até agora para lidar com os problemas de otimização associados aos sistemas de telecomunicações, detectando as principais tendências e desafios. Particularmente, a análise enfoca os problemas de desenho, roteamento e alocação de recursos. Além disso, devido á natureza desses desafios, o presente trabalho discute como a hibridização de metaheurísticas com metodologias como simulação pode ser empregada para ampliar as capacidades das metaheurísticas na resolução de problemas de otimização estocásticos na indústria de telecomunicações. Logo, é analisado um problema de otimização com aplicações práticas para redes de telecomunica ções: o problema das p medianas não capacitado em que um número fixo de hubs tem capacidade ilimitada, cada nó não-hub é alocado para um único hub e o número de hubs é conhecido de antemão, sendo analisado em cenários determinísticos e estocásticos. Dada a sua variedade e importância prática, o problema das p medianas vem sendo aplicado e estudado em vários contextos. Seguidamente, propõem-se dois algoritmos imune-inspirados e uma metaheurística de dois estágios, que se baseia na combinação de técnicas tendenciosas e aleatórias com uma estrutura de busca local iterada, além de sua integração com a técnica de simulação de Monte Carlo para resolver o problema das p medianas. Para demonstrar a eficiência dos algoritmos, uma série de testes computacionais é realizada, utilizando instâncias de grande porte da literatura. Estes resultados contribuem para uma compreensão mais profunda da eficácia das metaheurísticas empregadas para resolver o problema das p medianas em redes pequenas e grandes. Por último, uma aplicaçã o ilustrativa do problema das p medianas é apresentada, bem como alguns insights sobre novas possibilidades para ele, estendendo a metodologia proposta para ambientes da vida real.Recent advances in the telecommunication industry o er great opportunities to citizens and organizations in a globally-connected world, but they also arise a vast number of complex challenges that decision makers must face. Some of these challenges can be modeled as optimization problems. Examples include the framework of network utility maximization for resource allocation in communication networks, nding a network topology that satis es certain properties associated with quality of service requirements, overlay multicast networks, and other important features for source to destination communication. First, this thesis provides a review on how metaheuristics have been used so far to deal with optimization problems associated with telecommunication systems, detecting the main trends and challenges. Particularly the analysis focuses on the network design, routing, and allocation problems. In addition, due to the nature of these challenges, this work discusses how the hybridization of metaheuristics with methodologies such as simulation can be employed to extend the capabilities of metaheuristics when solving stochastic optimization problems. Then, a popular optimization problem with practical applications to the design of telecommunication networks: the Uncapacitated Single Allocation p-Hub Median Problem (USApHMP) where a xed number of hubs have unlimited capacity, each non-hub node is allocated to a single hub and the number of hubs is known in advance is analyzed in deterministic and stochastic scenarios. p-hub median problems are concerned with optimality of telecommunication and transshipment networks, and seek to minimize the cost of transportation or establishing. Next, two immune inspired metaheuristics are proposed to solve the USApHMP, besides that, a two-stage metaheuristic which relies on the combination of biased-randomized techniques with an iterated local search framework and its integration with simulation Monte Carlo technique for solving the same problem is proposed. In order to show their e ciency, a series of computational tests are carried out using small and large size instances from the literature. These results contribute to a deeper understanding of the e ectiveness of the employed metaheuristics for solving the USApHMP in small and large networks. Finally, an illustrative application of the USApHMP is presented as well as some insights about some new possibilities for it, extending the proposed methodology to real-life environments.Els últims avenços en la industria de les telecomunicacions ofereixen grans oportunitats per ciutadans i organitzacions en un món globalment connectat, però a la vegada, presenten reptes als que s'enfronten tècnics i enginyers que prenen decisions. Alguns d'aquests reptes es poden modelitzar com problemes d'optimització. Exemples inclouen l'assignació de recursos a les xarxes de comunicació, trobant una topologia de xarxa que satisfà certes propietats associades a requisits de qualitat de servei, xarxes multicast superposades i altres funcions importants per a la comunicació origen a destinació. El primer objectiu d'aquest treball és proporcionar un revisió de la literatura sobre com s'han utilitzat aquestes tècniques, tradicionalment, per tractar els problemes d'optimització associats a sistemes de telecomunicació, detectant les principals tendències i desa aments. Particularment, l'estudi es centra en els problemes de disseny de xarxes, enrutament i problemes d'assignació de recursos. Degut a la naturalesa d'aquests problemes, aquest treball també analitza com es poden combinar les tècniques metaheurístiques amb metodologies de simulació per ampliar les capacitats de resoldre problemes d'optimització estocàstics. A més, es tracta un popular problema d'optimització amb aplicacions pràctiques per xarxes de telecomunicació, el problema de la p mediana no capacitat, analitzant-lo des d'escenaris deterministes i estocàstics. Aquest problema consisteix en determinar el nombre d'instal lacions (medianes) en una xarxa, minimitzant la suma de tots els costs o distàncies des d'un punt de demanda a la instal lació més propera. En general, el problema de la p mediana està lligat amb l'optimització de xarxes de telecomunicacions i de transport, i busquen minimitzar el cost de transport o establiment de la xarxa. Es proposa dos algoritmes immunològics i un algoritme metaheurístic de dues etapes basat en la combinació de tècniques aleatòries amb simulacions Monte Carlo. L'e ciència de les algoritmes es posa a prova mitjançant alguns dels test computacionals més utilitzats a la literatura, obtenint uns resultats molt satisfactoris, ja que es capaç de resoldre casos petits i grans en qüestió de segons i amb un baix cost computacional. Finalment, es presenta una aplicació il lustrativa del problema de la p mediana, així com algunes noves idees sobre aquest, que estenen la metodologia proposta a problemes de la vida real

    Iterative restricted space search : a solving approach based on hybridization

    Get PDF
    Face à la complexité qui caractérise les problèmes d'optimisation de grande taille l'exploration complète de l'espace des solutions devient rapidement un objectif inaccessible. En effet, à mesure que la taille des problèmes augmente, des méthodes de solution de plus en plus sophistiquées sont exigées afin d'assurer un certain niveau d 'efficacité. Ceci a amené une grande partie de la communauté scientifique vers le développement d'outils spécifiques pour la résolution de problèmes de grande taille tels que les méthodes hybrides. Cependant, malgré les efforts consentis dans le développement d'approches hybrides, la majorité des travaux se sont concentrés sur l'adaptation de deux ou plusieurs méthodes spécifiques, en compensant les points faibles des unes par les points forts des autres ou bien en les adaptant afin de collaborer ensemble. Au meilleur de notre connaissance, aucun travail à date n'à été effectué pour développer un cadre conceptuel pour la résolution efficace de problèmes d'optimisation de grande taille, qui soit à la fois flexible, basé sur l'échange d'information et indépendant des méthodes qui le composent. L'objectif de cette thèse est d'explorer cette avenue de recherche en proposant un cadre conceptuel pour les méthodes hybrides, intitulé la recherche itérative de l'espace restreint, ±Iterative Restricted Space Search (IRSS)>>, dont, la principale idée est la définition et l'exploration successives de régions restreintes de l'espace de solutions. Ces régions, qui contiennent de bonnes solutions et qui sont assez petites pour être complètement explorées, sont appelées espaces restreints "Restricted Spaces (RS)". Ainsi, l'IRSS est une approche de solution générique, basée sur l'interaction de deux phases algorithmiques ayant des objectifs complémentaires. La première phase consiste à identifier une région restreinte intéressante et la deuxième phase consiste à l'explorer. Le schéma hybride de l'approche de solution permet d'alterner entre les deux phases pour un nombre fixe d'itérations ou jusqu'à l'atteinte d'une certaine limite de temps. Les concepts clés associées au développement de ce cadre conceptuel et leur validation seront introduits et validés graduellement dans cette thèse. Ils sont présentés de manière à permettre au lecteur de comprendre les problèmes que nous avons rencontrés en cours de développement et comment les solutions ont été conçues et implémentées. À cette fin, la thèse a été divisée en quatre parties. La première est consacrée à la synthèse de l'état de l'art dans le domaine de recherche sur les méthodes hybrides. Elle présente les principales approches hybrides développées et leurs applications. Une brève description des approches utilisant le concept de restriction d'espace est aussi présentée dans cette partie. La deuxième partie présente les concepts clés de ce cadre conceptuel. Il s'agit du processus d'identification des régions restreintes et des deux phases de recherche. Ces concepts sont mis en oeuvre dans un schéma hybride heuristique et méthode exacte. L'approche a été appliquée à un problème d'ordonnancement avec deux niveaux de décision, relié au contexte des pâtes et papier: "Pulp Production Scheduling Problem". La troisième partie a permit d'approfondir les concepts développés et ajuster les limitations identifiées dans la deuxième partie, en proposant une recherche itérative appliquée pour l'exploration de RS de grande taille et une structure en arbre binaire pour l'exploration de plusieurs RS. Cette structure a l'avantage d'éviter l'exploration d 'un espace déjà exploré précédemment tout en assurant une diversification naturelle à la méthode. Cette extension de la méthode a été testée sur un problème de localisation et d'allocation en utilisant un schéma d'hybridation heuristique-exact de manière itérative. La quatrième partie généralise les concepts préalablement développés et conçoit un cadre général qui est flexible, indépendant des méthodes utilisées et basé sur un échange d'informations entre les phases. Ce cadre a l'avantage d'être général et pourrait être appliqué à une large gamme de problèmes

    On hub location problems in geographically flexible networks

    Get PDF
    The authors were partially supported by research groups SEJ-584 and FQM-331 (Junta de Andalucia) and projects MTM2016-74983-C02-01 (Spanish Ministry of Education and Science/FEDER), FEDER-US-1256951, P18-FR-1422, P18-FR-2369 (Junta de Andalucia), CEI-3FQM331 (Andalucia Tech), and NetmeetData (Fundacion BBVA - Big Data 2019). We also would like to acknowledge Elena Fernandez (Universidad de Cadiz) for her useful and detailed comments on previous versions of this manuscript.In this paper, we propose an extension of the uncapacitated hub location problem where the potential positions of the hubs are not fixed in advance. Instead, they are allowed to belong to a region around an initial discrete set of nodes. We give a general framework in which the collection, transportation, and distribution costs are based on norm-based distances and the hub-activation setup costs depend not only on the location of the hub that are opened but also on the size of the region where they are placed. Two alternative mathematical programming formulations are proposed. The first one is a compact formulation while the second one involves a family of constraints of exponential size that we separate efficiently giving rise to a branch-and-cut algorithm. The results of an extensive computational experience are reported showing the advantages of each of the approaches.Junta de Andalucia SEJ-584 FQM-331 FEDER-US-1256951 P18-FR-1422 P18-FR-2369Spanish Government European Commission MTM2016-74983-C02-01Andalucia Tech CEI-3FQM331NetmeetData (Fundacion BBVA - Big Data 2019
    corecore