271 research outputs found

    Scientific Workflow Scheduling for Cloud Computing Environments

    Get PDF
    The scheduling of workflow applications consists of assigning their tasks to computer resources to fulfill a final goal such as minimizing total workflow execution time. For this reason, workflow scheduling plays a crucial role in efficiently running experiments. Workflows often have many discrete tasks and the number of different task distributions possible and consequent time required to evaluate each configuration quickly becomes prohibitively large. A proper solution to the scheduling problem requires the analysis of tasks and resources, production of an accurate environment model and, most importantly, the adaptation of optimization techniques. This study is a major step toward solving the scheduling problem by not only addressing these issues but also optimizing the runtime and reducing monetary cost, two of the most important variables. This study proposes three scheduling algorithms capable of answering key issues to solve the scheduling problem. Firstly, it unveils BaRRS, a scheduling solution that exploits parallelism and optimizes runtime and monetary cost. Secondly, it proposes GA-ETI, a scheduler capable of returning the number of resources that a given workflow requires for execution. Finally, it describes PSO-DS, a scheduler based on particle swarm optimization to efficiently schedule large workflows. To test the algorithms, five well-known benchmarks are selected that represent different scientific applications. The experiments found the novel algorithms solutions substantially improve efficiency, reducing makespan by 11% to 78%. The proposed frameworks open a path for building a complete system that encompasses the capabilities of a workflow manager, scheduler, and a cloud resource broker in order to offer scientists a single tool to run computationally intensive applications

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi

    Online Self-Healing Control Loop to Prevent and Mitigate Faults in Scientific Workflows

    Get PDF
    Scientific workflows have become mainstream for conducting large-scale scientific research. As a result, many workflow applications and Workflow Management Systems (WMSs) have been developed as part of the cyberinfrastructure to allow scientists to execute their applications seamlessly on a range of distributed platforms. In spite of many success stories, a key challenge for running workflow in distributed systems is failure prediction, detection, and recovery. In this paper, we present a novel online self-healing framework, where failures are predicted before they happen, and are mitigated when possible. The proposed approach is to use control theory developed as part of autonomic computing, and in particular apply the proportional-integral-derivative controller (PID controller) control loop mechanism, which is widely used in industrial control systems, to mitigate faults by adjusting the inputs of the mechanism. The PID controller aims at detecting the possibility of a fault far enough in advance so that an action can be performed to prevent it from happening. To demonstrate the feasibility of the approach, we tackle two common execution faults of the Big Data era—data footprint and memory usage. We define, implement, and evaluate PID controllers to autonomously manage data and memory usage of a bioinformatics workflow that consumes/produces over 4.4TB of data, and requires over 24TB of memory to run all tasks concurrently. Experimental results indicate that workflow executions may significantly benefit from PID controllers, in particular under online and unknown conditions. Simulation results show that nearly-optimal executions (slowdown of 1.01) can be attained when using our proposed control loop, and faults are detected and mitigated far in advance

    A Cloud Computing Capability Model for Large-Scale Semantic Annotation

    Get PDF
    Semantic technologies are designed to facilitate context-awareness for web content, enabling machines to understand and process them. However, this has been faced with several challenges, such as disparate nature of existing solutions and lack of scalability in proportion to web scale. With a holistic perspective to web content semantic annotation, this paper focuses on leveraging cloud computing for these challenges. To achieve this, a set of requirements towards holistic semantic annotation on the web is defined and mapped with cloud computing mechanisms to facilitate them. Technical specification for the requirements is critically reviewed and examined against each of the cloud computing mechanisms, in relation to their technical functionalities. Hence, a mapping is established if the cloud computing mechanism's functionalities proffer a solution for implementation of a requirement's technical specification. The result is a cloud computing capability model for holistic semantic annotation which presents an approach towards delivering large scale semantic annotation on the web via a cloud platform

    Advances in Grid Computing

    Get PDF
    This book approaches the grid computing with a perspective on the latest achievements in the field, providing an insight into the current research trends and advances, and presenting a large range of innovative research papers. The topics covered in this book include resource and data management, grid architectures and development, and grid-enabled applications. New ideas employing heuristic methods from swarm intelligence or genetic algorithm and quantum encryption are considered in order to explain two main aspects of grid computing: resource management and data management. The book addresses also some aspects of grid computing that regard architecture and development, and includes a diverse range of applications for grid computing, including possible human grid computing system, simulation of the fusion reaction, ubiquitous healthcare service provisioning and complex water systems

    Runtime Adaptation of Scientific Service Workflows

    Get PDF
    Software landscapes are rather subject to change than being complete after having been built. Changes may be caused by a modified customer behavior, the shift to new hardware resources, or otherwise changed requirements. In such situations, several challenges arise. New architectural models have to be designed and implemented, existing software has to be integrated, and, finally, the new software has to be deployed, monitored, and, where appropriate, optimized during runtime under realistic usage scenarios. All of these situations often demand manual intervention, which causes them to be error-prone. This thesis addresses these types of runtime adaptation. Based on service-oriented architectures, an environment is developed that enables the integration of existing software (i.e., the wrapping of legacy software as web services). A workflow modeling tool that aims at an easy-to-use approach by separating the role of the workflow expert and the role of the domain expert. After the development of workflows, tools that observe the executing infrastructure and perform automatic scale-in and scale-out operations are presented. Infrastructure-as-a-Service providers are used to scale the infrastructure in a transparent and cost-efficient way. The deployment of necessary middleware tools is automatically done. The use of a distributed infrastructure can lead to communication problems. In order to keep workflows robust, these exceptional cases need to treated. But, in this way, the process logic of a workflow gets mixed up and bloated with infrastructural details, which yields an increase in its complexity. In this work, a module is presented that can deal automatically with infrastructural faults and that thereby allows to keep the separation of these two layers. When services or their components are hosted in a distributed environment, some requirements need to be addressed at each service separately. Although techniques as object-oriented programming or the usage of design patterns like the interceptor pattern ease the adaptation of service behavior or structures. Still, these methods require to modify the configuration or the implementation of each individual service. On the other side, aspect-oriented programming allows to weave functionality into existing code even without having its source. Since the functionality needs to be woven into the code, it depends on the specific implementation. In a service-oriented architecture, where the implementation of a service is unknown, this approach clearly has its limitations. The request/response aspects presented in this thesis overcome this obstacle and provide a SOA-compliant and new methods to weave functionality into the communication layer of web services. The main contributions of this thesis are the following: Shifting towards a service-oriented architecture: The generic and extensible Legacy Code Description Language and the corresponding framework allow to wrap existing software, e.g., as web services, which afterwards can be composed into a workflow by SimpleBPEL without overburdening the domain expert with technical details that are indeed handled by a workflow expert. Runtime adaption: Based on the standardized Business Process Execution Language an automatic scheduling approach is presented that monitors all used resources and is able to automatically provision new machines in case a scale-out becomes necessary. If the resource's load drops, e.g., because of less workflow executions, a scale-in is also automatically performed. The scheduling algorithm takes the data transfer between the services into account in order to prevent scheduling allocations that eventually increase the workflow's makespan due to unnecessary or disadvantageous data transfers. Furthermore, a multi-objective scheduling algorithm that is based on a genetic algorithm is able to additionally consider cost, in a way that a user can define her own preferences rising from optimized execution times of a workflow and minimized costs. Possible communication errors are automatically detected and, according to certain constraints, corrected. Adaptation of communication: The presented request/response aspects allow to weave functionality into the communication of web services. By defining a pointcut language that only relies on the exchanged documents, the implementation of services must neither be known nor be available. The weaving process itself is modeled using web services. In this way, the concept of request/response aspects is naturally embedded into a service-oriented architecture

    High performance computing in the cloud

    Get PDF
    In recent years, the interest in both scientific and business workflows has increased. A workflow is composed of a series of tools, which should be executed in a predefined order to perform an analysis. Traditionally, these workflows were executed in a manual way, sending the output of one tool to the next one in the analysis process. Many applications to execute workflows automatically, appeared recently. These applications ease the work of the users while executing their analyses. In addition, from the computational point of view, some workflows require a significant amount of resources. Consequently, workflow execution moved from single workstations to distributed environments such as Grids or Clouds. Data management and tasks scheduling are required to execute workflows in an efficient way in such environments. In this thesis, we propose a cloud-based HPC environment, focusing on tasks scheduling, resources auto-scaling, data management and simplifying the access to the resources with software clients. First, the cloud computing infrastructure is devised, which includes the base software (i.e. OpenStack) plus several additional modules aimed at improving authentication (i.e. LDAP) and data management (i.e. GridFTP, Globus Online and CloudFuse). Second, built on top of the mentioned infrastructure, the TORQUE distributed resources manager and the Maui scheduler have been configured to schedule and distribute tasks to the cloud-based workers. To reduce the number of idle nodes and the incurred cost of the active cloud resources, we also propose a configurable auto-scaling technique, which is able to scale the execution cluster depending on the workload. Additionally, in order to simplify tasks submission to the TORQUE execution cluster, we have interconnected the Galaxy workflows management system with it, therefore users benefit from a simple way to execute their tasks. Finally, we conducted an experimental evaluation, composed by a number of different studies with synthetic and real-world applications, to show the behaviour of the auto-scaled execution cluster managed by TORQUE and Maui. All experiments have been performed by using an OpenStack cloud computing environment and the benchmarked applications correspond to the benchmarking suite, which is specially designed for workflows scheduling in the cloud computing environment. Cybershake, Ligo and Montage have been the selected synthetic applications from the benchmarking suite. GECKO and a GWAS pipeline represent the real-world test use cases, both having a diverse and heterogeneous set of tasks.The numerous technological advances in data acquisition techniques allow the massive production of enormous amounts of data in diverse fields such as astronomy, health and social networks. Nowadays, only a small part of this data can be analysed because of the lack of computational resources. High Performance Computing (HPC) strategies represent the single choice to analyse such overwhelming amount of data. However, in general, HPC techniques require the use of big and expensive computing and storage infrastructures, usually not affordable or available for most users. Cloud computing, where users pay for the resources they need and when they actually need them, appears as an interesting alternative. Besides the savings in hardware infrastructure, cloud computing offers further advantages such as the removal of installation, administration and supplying requirements. In addition, it enables users to use better hardware than the one they can usually afford, scale the resources depending on their needs, and a greater fault-tolerance, amongst others. The efficient utilisation of HPC resources becomes a fundamental task, particularly in cloud computing. We need to consider the cost of using HPC resources, specially in the case of cloud-based infrastructures, where users have to pay for storing, transferring and analysing data. Therefore, it is really important the usage of generic tasks scheduling and auto-scaling techniques to efficiently exploit the computational resources. It is equally important to make these tasks user-friendly through the development of tools/applications (software clients), which act as interface between the user and the infrastructure
    corecore