75 research outputs found

    An Analysis of Electromagnetic Interference (EMI) of Ultra Wideband(UWB) and IEEE 802.11A Wireless Local Area Network (WLAN) Employing Orthogonal Frequency Division Multiplexing (OFDM)

    Get PDF
    Military communications require the rapid deployment of mobile, high-bandwidth systems. These systems must provide anytime, anywhere capabilities with minimal interference to existing military, private, and commercial communications. Ultra Wideband (UWB) technology is being advanced as the next generation radio technology and has the potential to revolutionize indoor wireless communications. The ability of UWB to mitigate multipath fading, provide high-throughput data rates (e.g., greater than 100 Mbps), provide excellent signal penetration (e.g., through walls), and low implementation costs makes it an ideal technology for a wide range of private and public sector applications. Preliminary UWB studies conducted by The Institute for Telecommunications Science (ITS) and the Defense Advanced Research Projects Agency (DARPA) have discovered that potential exists for harmful interference to occur. While these studies have provided initial performance estimates, the interference effects of UWB transmissions on coexisting spectral users are largely unknown. This research characterizes the electromagnetic interference (EMI) effects of UWB on the throughput performance of an IEEE 802.11a ad-hoc network. Radiated measurements in an anechoic chamber investigate interference performance using three modulation schemes (BPSK, BPPM, and OOK) and four pulse repetition frequencies over two Unlicensed National Information Infrastructure (U-NII) channels. Results indicate that OOK and BPPM can degrade throughput performance by up to 20% at lower pulse repetition frequencies (PRFs) in lower U-NII channels. Minimal performance degradation (less than one percent) due to interference was observed for BPSK at the lower PRFs and higher U-NII channels

    Energy-efficient resource allocation for edge computing based on models of power consumption

    Get PDF
    Computing services, when provided by Edge Networks rather than centralized clouds, are delivered close to the geographically extreme user edge. Edge computing enables functional offloading and improved scalability but suboptimal design of edge networks can result in needlessly high energy consumption and mismanagement of resources. Thus, how to effectively minimize the power dissipation of network resources at the edge is a significant problem as networks evolve. This thesis investigates a complete suite of energy efficient solution for the edge network. A frequency scalable router architecture, based on the Software Defined Network (SDN) concept, has been proposed. Two new control policies have been integrated with the proposed green architecture and their performance has been analysed to evaluate the trade-offs between energy efficiency and performance in frequency-scaled Network Devices. A Network Device Power Model (NDPM) has been formulated to explore the power dissipation characteristics of frequency scalable CMOS devices (as measured using a NetFPGA testbed). An Online Energy-efficient Resource Allocation model (OERA) has been designed based on this model. This allocation model can map the resource requests onto a substrate network in the edge, with concurrent consideration of multiple factors including geographical location, resource availability and network-level energy cost, etc. The model features better support of virtual resource requests and lower power consumption than existing solutions

    Hybrid Linux System Modeling with Mixed-Level Simulation

    Get PDF
    Dissertação de mestrado integrado em Engenharia Electrónica Industrial e ComputadoresWe live in a world where the need for computer-based systems with better performances is growing fast, and part of these systems are embedded systems. This kind of systems are everywhere around us, and we use them everyday even without noticing. Nevertheless, there are issues related to embedded systems in what comes to real-time requirements, because the failure of such systems can be harmful to the user or its environment. For this reason, a common technique to meet real-time requirements in difficult scenarios is accelerating software applications by using parallelization techniques and dedicated hardware components. This dissertations’ goal is to adopt a methodology of hardware-software co-design aided by co-simulation, making the design flow more efficient and reliable. An isolated validation does not guarantee integral system functionality, but the use of an integrated co-simulation environment allows detecting system problems before moving to the physical implementation. In this dissertation, an integrated co-simulation environment will be developed, using the Quick EMUlator (QEMU) as a tool for emulating embedded software platforms in a Linux-based environment. A SystemVerilog Direct Programming Interface (DPI) Library was developed in order to allow SystemVerilog simulators that support DPI to perform co-simulation with QEMU. A library for DLL blocks was also developed in order to allow PSIMR to communicate with QEMU. Together with QEMU, these libraries open up the possibility to co-simulate several parts of a system that includes power electronics and hardware acceleration together with an emulated embedded platform. In order to validate the functionality of the developed co-simulation environment, a demonstration application scenario was developed following a design flow that takes advantage of the mentioned simulation environment capabilities.Vivemos num mundo em que a procura por sistemas computer-based com desempenhos cada vez melhores domina o mercado. Estamos rodeados por este tipo de sistemas, usando-os todos os dias sem nos apercebermos disso, sendo grande parte deles sistemas embebidos. Ainda assim, existem problemas relacionados com os sistemas embebidos no que toca aos requisitos de tempo-real, porque uma falha destes sistemas pode ser perigosa para o utilizador ou o ambiente que o rodeia. Devido a isto, uma técnica comum para se conseguir cumprir os requisitos de tempo-real em aplicações críticas é a aceleração de aplicações de software, utilizando técnicas de paralelização e o uso de componentes de hardware dedicados. O objetivo desta dissertação é adotar uma metodologia de co-design de hardwaresoftware apoiada em co-simulação, tornando o design flow mais eficiente e fiável. Uma validação isolada não garante a funcionalidade do sistema completo, mas a utilização de um ambiente de co-simulação permite detetar problemas no sistema antes deste ser implementado na plataforma alvo. Nesta dissertação será desenvolvido um ambiente de co-simulação usando o QEMU como emulador para as plataformas de software "embebido" baseadas em Linux. Uma biblioteca para SystemVerilog DPI foi desenvolvida, que permite a co-simulação entre o QEMU e simuladores de Register-Transfer Level (RTL) que suportem SystemVerilog. Foi também desenvolvida uma biblioteca para os blocos Dynamic Link Library (DLL) do PSIMR , de modo a permitir a ligação ao QEMU. Em conjunto, as bibliotecas desenvolvidas permitem a co-simulação de diversas partes do sistema, nomeadamente do hardware de eletrónica de potência e dos aceleradores de hardware, juntamente com a plataforma embebida emulada no QEMU.Para validar as funcionalidades do ambiente de co-simulação desenvolvido, foi explorado um cenário de aplicação que tem por base esse mesmo ambiente

    A Novel Machine Learning Classifier Based on a Qualia Modeling Agent (QMA)

    Get PDF
    This dissertation addresses a problem found in supervised machine learning (ML) classification, that the target variable, i.e., the variable a classifier predicts, has to be identified before training begins and cannot change during training and testing. This research develops a computational agent, which overcomes this problem. The Qualia Modeling Agent (QMA) is modeled after two cognitive theories: Stanovich\u27s tripartite framework, which proposes learning results from interactions between conscious and unconscious processes; and, the Integrated Information Theory (IIT) of Consciousness, which proposes that the fundamental structural elements of consciousness are qualia. By modeling the informational relationships of qualia, the QMA allows for retaining and reasoning-over data sets in a non-ontological, non-hierarchical qualia space (QS). This novel computational approach supports concept drift, by allowing the target variable to change ad infinitum without re-training while achieving classification accuracy comparable to or greater than benchmark classifiers. Additionally, the research produced a functioning model of Stanovich\u27s framework, and a computationally tractable working solution for a representation of qualia, which when exposed to new examples, is able to match the causal structure and generate new inferences

    LCCC Workshop on Process Control

    Get PDF

    Special Topics in Information Technology

    Get PDF
    This open access book presents thirteen outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the thirteen best theses defended in 2019-20 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Advances in Automated Driving Systems

    Get PDF
    Electrification, automation of vehicle control, digitalization and new mobility are the mega-trends in automotive engineering, and they are strongly connected. While many demonstrations for highly automated vehicles have been made worldwide, many challenges remain in bringing automated vehicles to the market for private and commercial use. The main challenges are as follows: reliable machine perception; accepted standards for vehicle-type approval and homologation; verification and validation of the functional safety, especially at SAE level 3+ systems; legal and ethical implications; acceptance of vehicle automation by occupants and society; interaction between automated and human-controlled vehicles in mixed traffic; human–machine interaction and usability; manipulation, misuse and cyber-security; the system costs of hard- and software and development efforts. This Special Issue was prepared in the years 2021 and 2022 and includes 15 papers with original research related to recent advances in the aforementioned challenges. The topics of this Special Issue cover: Machine perception for SAE L3+ driving automation; Trajectory planning and decision-making in complex traffic situations; X-by-Wire system components; Verification and validation of SAE L3+ systems; Misuse, manipulation and cybersecurity; Human–machine interactions, driver monitoring and driver-intention recognition; Road infrastructure measures for the introduction of SAE L3+ systems; Solutions for interactions between human- and machine-controlled vehicles in mixed traffic
    corecore