355 research outputs found

    An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 ÎĽm CMOS Technology for Passive Tag Applications

    Get PDF
    Battery-less passive sensor tags based on RFID or NFC technology have achieved much popularity in recent times. Passive tags are widely used for various applications like inventory control or in biotelemetry. In this paper, we present a new RFID/NFC frontend IC (integrated circuit) for 13.56 MHz passive tag applications. The design of the frontend IC is compatible with the standard ISO 15693/NFC 5. The paper discusses the analog design part in details with a brief overview of the digital interface and some of the critical measured parameters. A novel approach is adopted for the demodulator design, to demodulate the 10% ASK (amplitude shift keying) signal. The demodulator circuit consists of a comparator designed with a preset offset voltage. The comparator circuit design is discussed in detail. The power consumption of the bandgap reference circuit is used as the load for the envelope detection of the ASK modulated signal. The sub-threshold operation and low-supply-voltage are used extensively in the analog design—to keep the power consumption low. The IC was fabricated using 0.18 μ m CMOS technology in a die area of 1.5 mm × 1.5 mm and an effective area of 0.7 m m 2 . The minimum supply voltage desired is 1.2 V, for which the total power consumption is 107 μ W. The analog part of the design consumes only 36 μ W, which is low in comparison to other contemporary passive tags ICs. Eventually, a passive tag is developed using the frontend IC, a microcontroller, a temperature and a pressure sensor. A smart NFC device is used to readout the sensor data from the tag employing an Android-based application software. The measurement results demonstrate the full passive operational capability. The IC is suitable for low-power and low-cost industrial or biomedical battery-less sensor applications. A figure-of-merit (FOM) is proposed in this paper which is taken as a reference for comparison with other related state-of-the-art researches

    Next generation RFID telemetry design for biomedical implants.

    Get PDF
    The design and development of a Radio Frequency Identification (RFID) based pressure-sensing system to increase the range of current Intra-Ocular Pressure (IOP) sensing systems is described in this dissertation. A large number of current systems use near-field inductive coupling for the transfer of energy and data, which limits the operational range to only a few centimeters and does not allow for continuous monitoring of pressure. Increasing the powering range of the telemetry system will offer the possibility of continuous monitoring since the reader can be attached to a waist belt or put on a night stand when sleeping. The system developed as part of this research operates at Ultra-High Frequencies (UHF) and makes use of the electromagnetic far field to transfer energy and data, which increases the potential range of operation and allows for the use of smaller antennas. The system uses a novel electrically small antenna (ESA) to receive the incident RF signal. A four stage Schottky circuit rectifies and multiplies the received RF signal and provides DC power to a Colpitts oscillator. The oscillator is connected to a pressure sensor and provides an output signal frequency that is proportional to the change in pressure. The system was fabricated using a mature, inexpensive process. The performance of the system compares well with current state of the art, but uses a smaller antenna and a less expensive fabrication process. The system was able to operate over the desired range of 1 m using a half-wave dipole antenna. It was possible to power the system over a range of at least 6.4 cm when the electrically small antenna was used as the receiving antenna

    A Fully Implantable Opto-Electro Closed-Loop Neural Interface for Motor Neuron Disease Studies

    Get PDF
    This paper presents a fully implantable closed-loop device for use in freely moving rodents to investigate new treatments for motor neuron disease. The 0.18 µm CMOS integrated circuit comprises 4 stimulators, each featuring 16 channels for optical and electrical stimulation using arbitrary current waveforms at frequencies from 1.5 Hz to 50 kHz, and a bandwidth programmable front-end for neural recording. The implant uses a Qi wireless inductive link which can deliver >100 mW power at a maximum distance of 2 cm for a freely moving rodent. A backup rechargeable battery can support 10 mA continuous stimulation currents for 2.5 hours in the absence of an inductive power link. The implant is controlled by a graphic user interface with broad programmable parameters via a Bluetooth low energy bidirectional data telemetry link. The encapsulated implant is 40 mm × 20 mm × 10 mm. Measured results are presented showing the electrical performance of the electronics and the packaging method

    Design of Wireless Power Transfer and Data Telemetry System for Biomedical Applications

    Get PDF
    With the advancement of biomedical instrumentation technologies sensor based remote healthcare monitoring system is gaining more attention day by day. In this system wearable and implantable sensors are placed outside or inside of the human body. Certain sensors are needed to be placed inside the human body to acquire the information on the vital physiological phenomena such as glucose, lactate, pH, oxygen, etc. These implantable sensors have associated circuits for sensor signal processing and data transmission. Powering the circuit is always a crucial design issue. Batteries cannot be used in implantable sensors which can come in contact with the blood resulting in serious health risks. An alternate approach is to supply power wirelessly for tether-less and battery- less operation of the circuits.Inductive power transfer is the most common method of wireless power transfer to the implantable sensors. For good inductive coupling, the inductors should have high inductance and high quality factor. But the physical dimensions of the implanted inductors cannot be large due to a number of biomedical constraints. Therefore, there is a need for small sized and high inductance, high quality factor inductors for implantable sensor applications. In this work, design of a multi-spiral solenoidal printed circuit board (PCB) inductor for biomedical application is presented. The targeted frequency for power transfer is 13.56 MHz which is within the license-free industrial, scientific and medical (ISM) band. A figure of merit based optimization technique has been utilized to optimize the PCB inductors. Similar principal is applied to design on-chip inductor which could be a potential solution for further miniaturization of the implantable system. For layered human tissue the optimum frequency of power transfer is 1 GHz for smaller coil size. For this reason, design and optimization of multi-spiral solenoidal integrated inductors for 1 GHz frequency is proposed. Finally, it is demonstrated that the proposed inductors exhibit a better overall performance in comparison with the conventional inductors for biomedical applications

    Integrated circuit & system design for concurrent amperometric and potentiometric wireless electrochemical sensing

    Get PDF
    Complementary Metal-Oxide-Semiconductor (CMOS) biosensor platforms have steadily grown in healthcare and commerial applications. This technology has shown potential in the field of commercial wearable technology, where CMOS sensors aid the development of miniaturised sensors for an improved cost of production and response time. The possibility of utilising wireless power and data transmission techniques for CMOS also allows for the monolithic integration of the communication, power and sensing onto a single chip, which greatly simplifies the post-processing and improves the efficiency of data collection. The ability to concurrently utilise potentiometry and amperometry as an electrochemical technique is explored in this thesis. Potentiometry and amperometry are two of the most common transduction mechanisms for electrochemistry, with their own advantages and disadvantages. Concurrently applying both techniques will allow for real-time calibration of background pH and for improved accuracy of readings. To date, developing circuits for concurrently sensing potentiometry and amperometry has not been explored in the literature. This thesis investigates the possibility of utilising CMOS sensors for wireless potentiometric and amperometric electrochemical sensing. To start with, a review of potentiometry and amperometry is evaluated to understand the key factors behind their operation. A new configuration is proposed whereby the reference electrode for both electrochemistry techniques are shared. This configuration is then compared to both the original configurations to determine any differences in the sensing accuracy through a novel experiment that utilises hydrogen peroxide as a measurement analyte. The feasibility of the configuration with the shared reference electrode is proven and utilised as the basis of the electrochemical configuration for the front end circuits. A unique front-end circuit named DAPPER is developed for the shared reference electrode topology. A review of existing architectures for potentiometry and amperometry is evaluated, with a specific focus on low power consumption for wireless applications. In addition, both the electrochemical sensing outputs are mixed into a single output data channel for use with a near-field communication (NFC). This mixing technique is also further analysed in this thesis to understand the errors arising due to various factors. The system is fabricated on TSMC 180nm technology and consumes 28µW. It measures a linear input current range from 250pA - 0.1µW, and an input voltage range of 0.4V - 1V. This circuit is tested and verified for both electrical and electrochemical tests to showcase its feasibility for concurrent measurements. This thesis then provides the integration of wireless blocks into the system for wireless powering and data transmission. This is done through the design of a circuit named SPACEMAN that consists of the concurrent sensing front-end, wireless power blocks, data transmission, as well as a state machine that allows for the circuit to switch between modes: potentiometry only, amperometry only, concurrent sensing and none. The states are switched through re-booting the circuit. The core size of the electronics is 0.41mm² without the coil. The circuit’s wireless powering and data transmission is tested and verified through the use of an external transmitter and a connected printed circuit board (PCB) coil. Finally, the future direction for ongoing work to proceed towards a fully monolithic electrochemical technique is discussed through the next development of a fully integrated coil-on-CMOS system, on-chip electrodes with the electroplating and microfludics, the development of an external transmitter for powering the device and a test platform. The contributions of this thesis aim to formulate a use for wireless electrochemical sensors capable of concurrent measurements for use in wearable devices.Open Acces

    Investigation of high bandwith biodevices for transcutaneous wireless telemetry

    Get PDF
    PhD ThesisBIODEVICE implants for telemetry are increasingly applied today in various areas applications. There are many examples such as; telemedicine, biotelemetry, health care, treatments for chronic diseases, epilepsy and blindness, all of which are using a wireless infrastructure environment. They use microelectronics technology for diagnostics or monitoring signals such as Electroencephalography or Electromyography. Conceptually the biodevices are defined as one of these technologies combined with transcutaneous wireless implant telemetry (TWIT). A wireless inductive coupling link is a common way for transferring the RF power and data, to communicate between a reader and a battery-less implant. Demand for higher data rate for the acquisition data returned from the body is increasing, and requires an efficient modulator to achieve high transfer rate and low power consumption. In such applications, Quadrature Phase Shift Keying (QPSK) modulation has advantages over other schemes, and double the symbol rate with respect to Binary Phase Shift Keying (BPSK) over the same spectrum band. In contrast to analogue modulators for generating QPSK signals, where the circuit complexity and power dissipation are unsuitable for medical purposes, a digital approach has advantages. Eventually a simple design can be achieved by mixing the hardware and software to minimize size and power consumption for implantable telemetry applications. This work proposes a new approach to digital modulator techniques, applied to transcutaneous implantable telemetry applications; inherently increasing the data rate and simplifying the hardware design. A novel design for a QPSK VHDL modulator to convey a high data rate is demonstrated. Essentially, CPLD/FPGA technology is used to generate hardware from VHDL code, and implement the device which performs the modulation. This improves the data transmission rate between the reader and biodevice. This type of modulator provides digital synthesis and the flexibility to reconfigure and upgrade with the two most often languages used being VHDL and Verilog (IEEE Standard) being used as hardware structure description languages. The second objective of this thesis is to improve the wireless coupling power (WCP). An efficient power amplifier was developed and a new algorithm developed for auto-power control design at the reader unit, which monitors the implant device and keeps the device working within the safety regulation power limits (SAR). The proposed system design has also been modeled and simulated with MATLAB/Simulink to validate the modulator and examine the performance of the proposed modulator in relation to its specifications.Higher Education Ministry in Liby

    Design and Assembly of High-Temperature Signal Conditioning System on LTCC with Silicon Carbide CMOS Circuits

    Get PDF
    The objective of the work described in this dissertation paper is to develop a prototype electronic module on a low-temperature co-fired ceramic (LTCC) material. The electronic module would perform signal conditioning of sensor signals (thermocouples) operating under extreme conditions for applications like gas turbines to collect data on the health of the turbine blades during operation so that the turbines do not require shutdown for inspection to determine if maintenance is required. The collected data can indicate when such shutdowns, which cost $1M per day, should be scheduled and maintenance actually performed. The circuits for the signal conditioning system within the prototype module must survive the extreme temperature, pressure, and centrifugal force, or G-force, present in these settings. Multiple fabrication runs on different integrated silicon carbide (SiC) process technologies have been carried out to meet the system requirements. The key circuits described in this dissertation are - two-stage op amp topologies and voltage reference, which are designed and fabricated in a new SiC CMOS process. The SiC two-stage op amp with PFET differential input pair showed 48.9 dB of DC gain at 500oC. The voltage reference is the first in SiC CMOS technology to employ an op amp-based topology. The op amp circuit in the voltage reference is a two-stage with NFET differential input pair that uses the indirect compensation technique for the first time in the SiC CMOS process to provide 42.5 dB gain at 350oC. The designed prototype module implemented with these circuits was verified to provide signal conditioning and signal transmission at 300oC. The signal transmission circuit on the module was also verified to operate with a resonant inductive wireless power transfer method at a frequency of 11.8 MHz for the first time. A second prototype module was also developed with the previously fabricated 1.2 µm SiC CMOS process. The second module was successfully tested (with wired power supply) to operate at 440oC inside a probe-station and also verified for the first time to sustain signal transmission (34.65 MHz) capability inside a spin-rig at a rotational speed of 10,920 rpm. All designed modules have dimensions of (length) 68.5 mm by (width) 34.3 mm to conform to the physical size requirements of the gas turbine blade

    Future of smart cardiovascular implants

    Get PDF
    Cardiovascular disease remains the leading cause of death in Western society. Recent technological advances have opened the opportunity of developing new and innovative smart stent devices that have advanced electrical properties that can improve diagnosis and even treatment of previously intractable conditions, such as central line access failure, atherosclerosis and reporting on vascular grafts for renal dialysis. Here we review the latest advances in the field of cardiovascular medical implants, providing a broad overview of the application of their use in the context of cardiovascular disease rather than an in-depth analysis of the current state of the art. We cover their powering, communication and the challenges faced in their fabrication. We focus specifically on those devices required to maintain vascular access such as ones used to treat arterial disease, a major source of heart attacks and strokes. We look forward to advances in these technologies in the future and their implementation to improve the human condition

    High-Efficiency Low-Voltage Rectifiers for Power Scavenging Systems

    Get PDF
    Abstract Rectifiers are commonly used in electrical energy conversion chains to transform the energy obtained from an AC signal source to a DC level. Conventional bridge and gate cross-coupled rectifier topologies are not sufficiently power efficient, particularly when input amplitudes are low. Depending on their rectifying element, their power efficiency is constrained by either the forward-bias voltage drop of a diode or the threshold voltage of a diode-connected MOS transistor. Advanced passive rectifiers use threshold cancellation techniques to effectively reduce the threshold voltage of MOS diodes. Active rectifiers use active circuits to control the conduction angle of low-loss MOS switches. In this thesis, an active rectifier with a gate cross-coupled topology is proposed, which replaces the diode-connected MOS transistors of a conventional rectifier with low-loss MOS switches. Using the inherent characteristics of MOS transistors as comparators, dynamic biasing of the bulks of main switches and small pull-up transistors, the proposed self-supplied active rectifier exhibits smaller voltage drop across the main switches leading to a higher power efficiency compared to conventional rectifier structures for a wide range of operating frequencies in the MHz range. Delivery of high load currents is another feature of the proposed rectifier. Using the bootstrapping technique, single- and double-reservoir based rectifiers are proposed. They present higher power and voltage conversion efficiencies compared to conventional rectifier structures. With a source amplitude of 3.3 V, when compared to the gate cross-coupled topology, the proposed active rectifier offers power and voltage conversion efficiencies improved by up to 10% and 16% respectively. The proposed rectifier using the bootstrap technique, including double- and single-reservoir schemes, are well suited for very low input amplitudes. They present power and voltage conversion efficiencies of 75% and 76% at input amplitude of 1.0 V and maintain their high efficiencies over input amplitudes greater than 1.0V. Single-reservoir bootstrap rectifier also reduces die area by 70% compared to its double-reservoir counterpart.---------Résumé Les redresseurs sont couramment utilisés dans de nombreux systèmes afin de transformer l'énergie électrique obtenue à partir d'une source alternative en une alimentation continue. Les topologies traditionnelles telles que les ponts de diodes et les redresseurs se servant de transistors à grilles croisées-couplées ne sont pas suffisamment efficaces en terme d’énergie, en particulier pour des signaux à faibles amplitudes. Dépendamment de leur élément de redressement, leur efficacité en termes de consommation d’énergie est limitée soit par la chute de tension de polarisation directe d'une diode, soit par la tension de seuil du transistor MOS. Les redresseurs passifs avancés utilisent une technique de conception pour réduire la tension de seuil des diodes MOS. Les redresseurs actifs utilisent des circuits actifs pour contrôler l'angle de conduction des commutateurs MOS à faible perte. Dans cette thèse, nous avons proposé un redresseur actif avec une topologie en grille croisée-couplée. Elle utilise des commutateurs MOS à faible perte à la place des transistors MOS connectés en diode comme redresseurs. Le circuit proposé utilise: des caractéristiques intrinsèques des transistors MOS pour les montages comparateurs et une polarisation dynamique des substrats des commutateurs principaux supportés par de petits transistors de rappel. Le redresseur proposé présente des faibles chutes de tension à travers le commutateur principal menant à une efficacité de puissance plus élevée par rapport aux structures d’un redresseur conventionnel pour une large gamme de fréquences de fonctionnement de l’ordre des MHz. La conduction des courants de charge élevée est une autre caractéristique du redresseur proposé. En utilisant la méthode de bootstrap, des redresseurs à simple et à double réservoir sont proposés. Ils présentent une efficacité de puissance et un rapport de conversion de tension élevés en comparaison avec les structures des redresseurs conventionnels. Avec une amplitude de source de 3,3 V, le redresseur proposé offre des efficacités de puissance et de conversion de tension améliorées par rapport au circuit à transistors croisés couplés. Ces améliorations atteignent 10% et 16% respectivement. Les redresseurs proposés utilisent la technique de bootstrap. Ils sont bien adaptés pour des amplitudes d'entrée très basses. À une amplitude d'entrée de 1,0 V, ces derniers redresseurs présentent des rendements de conversion de puissance et de tension de 75% et 76%. Le redresseur à simple réservoir réduit également l’aire de silicium requise de 70% par rapport à la version à double-réservoir
    • …
    corecore