16,891 research outputs found

    Action2Vec: A Crossmodal Embedding Approach to Action Learning

    Full text link
    We describe a novel cross-modal embedding space for actions, named Action2Vec, which combines linguistic cues from class labels with spatio-temporal features derived from video clips. Our approach uses a hierarchical recurrent network to capture the temporal structure of video features. We train our embedding using a joint loss that combines classification accuracy with similarity to Word2Vec semantics. We evaluate Action2Vec by performing zero shot action recognition and obtain state of the art results on three standard datasets. In addition, we present two novel analogy tests which quantify the extent to which our joint embedding captures distributional semantics. This is the first joint embedding space to combine verbs and action videos, and the first to be thoroughly evaluated with respect to its distributional semantics

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    Zero-Shot Visual Recognition using Semantics-Preserving Adversarial Embedding Networks

    Full text link
    We propose a novel framework called Semantics-Preserving Adversarial Embedding Network (SP-AEN) for zero-shot visual recognition (ZSL), where test images and their classes are both unseen during training. SP-AEN aims to tackle the inherent problem --- semantic loss --- in the prevailing family of embedding-based ZSL, where some semantics would be discarded during training if they are non-discriminative for training classes, but could become critical for recognizing test classes. Specifically, SP-AEN prevents the semantic loss by introducing an independent visual-to-semantic space embedder which disentangles the semantic space into two subspaces for the two arguably conflicting objectives: classification and reconstruction. Through adversarial learning of the two subspaces, SP-AEN can transfer the semantics from the reconstructive subspace to the discriminative one, accomplishing the improved zero-shot recognition of unseen classes. Comparing with prior works, SP-AEN can not only improve classification but also generate photo-realistic images, demonstrating the effectiveness of semantic preservation. On four popular benchmarks: CUB, AWA, SUN and aPY, SP-AEN considerably outperforms other state-of-the-art methods by an absolute performance difference of 12.2\%, 9.3\%, 4.0\%, and 3.6\% in terms of harmonic mean value

    Deep Multiple Instance Learning for Zero-shot Image Tagging

    Full text link
    In-line with the success of deep learning on traditional recognition problem, several end-to-end deep models for zero-shot recognition have been proposed in the literature. These models are successful to predict a single unseen label given an input image, but does not scale to cases where multiple unseen objects are present. In this paper, we model this problem within the framework of Multiple Instance Learning (MIL). To the best of our knowledge, we propose the first end-to-end trainable deep MIL framework for the multi-label zero-shot tagging problem. Due to its novel design, the proposed framework has several interesting features: (1) Unlike previous deep MIL models, it does not use any off-line procedure (e.g., Selective Search or EdgeBoxes) for bag generation. (2) During test time, it can process any number of unseen labels given their semantic embedding vectors. (3) Using only seen labels per image as weak annotation, it can produce a bounding box for each predicted labels. We experiment with the NUS-WIDE dataset and achieve superior performance across conventional, zero-shot and generalized zero-shot tagging tasks

    Detecting Human-Object Interactions via Functional Generalization

    Full text link
    We present an approach for detecting human-object interactions (HOIs) in images, based on the idea that humans interact with functionally similar objects in a similar manner. The proposed model is simple and efficiently uses the data, visual features of the human, relative spatial orientation of the human and the object, and the knowledge that functionally similar objects take part in similar interactions with humans. We provide extensive experimental validation for our approach and demonstrate state-of-the-art results for HOI detection. On the HICO-Det dataset our method achieves a gain of over 2.5% absolute points in mean average precision (mAP) over state-of-the-art. We also show that our approach leads to significant performance gains for zero-shot HOI detection in the seen object setting. We further demonstrate that using a generic object detector, our model can generalize to interactions involving previously unseen objects.Comment: AAAI 202

    Unified Generator-Classifier for Efficient Zero-Shot Learning

    Full text link
    Generative models have achieved state-of-the-art performance for the zero-shot learning problem, but they require re-training the classifier every time a new object category is encountered. The traditional semantic embedding approaches, though very elegant, usually do not perform at par with their generative counterparts. In this work, we propose an unified framework termed GenClass, which integrates the generator with the classifier for efficient zero-shot learning, thus combining the representative power of the generative approaches and the elegance of the embedding approaches. End-to-end training of the unified framework not only eliminates the requirement of additional classifier for new object categories as in the generative approaches, but also facilitates the generation of more discriminative and useful features. Extensive evaluation on three standard zero-shot object classification datasets, namely AWA, CUB and SUN shows the effectiveness of the proposed approach. The approach without any modification, also gives state-of-the-art performance for zero-shot action classification, thus showing its generalizability to other domains.Comment: 4 page

    Unsupervised Meta-Learning For Few-Shot Image Classification

    Full text link
    Few-shot or one-shot learning of classifiers requires a significant inductive bias towards the type of task to be learned. One way to acquire this is by meta-learning on tasks similar to the target task. In this paper, we propose UMTRA, an algorithm that performs unsupervised, model-agnostic meta-learning for classification tasks. The meta-learning step of UMTRA is performed on a flat collection of unlabeled images. While we assume that these images can be grouped into a diverse set of classes and are relevant to the target task, no explicit information about the classes or any labels are needed. UMTRA uses random sampling and augmentation to create synthetic training tasks for meta-learning phase. Labels are only needed at the final target task learning step, and they can be as little as one sample per class. On the Omniglot and Mini-Imagenet few-shot learning benchmarks, UMTRA outperforms every tested approach based on unsupervised learning of representations, while alternating for the best performance with the recent CACTUs algorithm. Compared to supervised model-agnostic meta-learning approaches, UMTRA trades off some classification accuracy for a reduction in the required labels of several orders of magnitude

    Sherlock: Scalable Fact Learning in Images

    Full text link
    We study scalable and uniform understanding of facts in images. Existing visual recognition systems are typically modeled differently for each fact type such as objects, actions, and interactions. We propose a setting where all these facts can be modeled simultaneously with a capacity to understand unbounded number of facts in a structured way. The training data comes as structured facts in images, including (1) objects (e.g., ),(2)attributes(e.g.,), (2) attributes (e.g., ), (3) actions (e.g., ),and(4)interactions(e.g.,), and (4) interactions (e.g., ). Each fact has a semantic language view (e.g., ) and a visual view (an image with this fact). We show that learning visual facts in a structured way enables not only a uniform but also generalizable visual understanding. We propose and investigate recent and strong approaches from the multiview learning literature and also introduce two learning representation models as potential baselines. We applied the investigated methods on several datasets that we augmented with structured facts and a large scale dataset of more than 202,000 facts and 814,000 images. Our experiments show the advantage of relating facts by the structure by the proposed models compared to the designed baselines on bidirectional fact retrieval.Comment: Jan 7 Updat

    Learning Spatiotemporal Features via Video and Text Pair Discrimination

    Full text link
    Current video representations heavily rely on learning from manually annotated video datasets which are time-consuming and expensive to acquire. We observe videos are naturally accompanied by abundant text information such as YouTube titles and Instagram captions. In this paper, we leverage this visual-textual connection to learn spatiotemporal features in an efficient weakly-supervised manner. We present a general cross-modal pair discrimination (CPD) framework to capture this correlation between a video and its associated text. Specifically, we adopt noise-contrastive estimation to tackle the computational issue imposed by the huge amount of pair instance classes and design a practical curriculum learning strategy. We train our CPD models on both standard video dataset (Kinetics-210k) and uncurated web video dataset (Instagram-300k) to demonstrate its effectiveness. Without further fine-tuning, the learnt models obtain competitive results for action classification on Kinetics under the linear classification protocol. Moreover, our visual model provides an effective initialization to fine-tune on downstream tasks, which yields a remarkable performance gain for action recognition on UCF101 and HMDB51, compared with the existing state-of-the-art self-supervised training methods. In addition, our CPD model yields a new state of the art for zero-shot action recognition on UCF101 by directly utilizing the learnt visual-textual embeddings. The code will be made available at https://github.com/MCG-NJU/CPD-Video.Comment: Technical Repor

    Integrating Local Material Recognition with Large-Scale Perceptual Attribute Discovery

    Full text link
    Material attributes have been shown to provide a discriminative intermediate representation for recognizing materials, especially for the challenging task of recognition from local material appearance (i.e., regardless of object and scene context). In the past, however, material attributes have been recognized separately preceding category recognition. In contrast, neuroscience studies on material perception and computer vision research on object and place recognition have shown that attributes are produced as a by-product during the category recognition process. Does the same hold true for material attribute and category recognition? In this paper, we introduce a novel material category recognition network architecture to show that perceptual attributes can, in fact, be automatically discovered inside a local material recognition framework. The novel material-attribute-category convolutional neural network (MAC-CNN) produces perceptual material attributes from the intermediate pooling layers of an end-to-end trained category recognition network using an auxiliary loss function that encodes human material perception. To train this model, we introduce a novel large-scale database of local material appearance organized under a canonical material category taxonomy and careful image patch extraction that avoids unwanted object and scene context. We show that the discovered attributes correspond well with semantically-meaningful visual material traits via Boolean algebra, and enable recognition of previously unseen material categories given only a few examples. These results have strong implications in how perceptually meaningful attributes can be learned in other recognition tasks
    • …
    corecore