14,530 research outputs found

    DEMO: Simulation of Realistic Mobility Model and Implementation of 802.11p (DSRC) for Vehicular Networks (VANET)

    Full text link
    An ad hoc network of vehicles (VANET) consists of vehicles that exchange information via radio in order to improve road safety, traffic management and do better distribution of traffic load in time and space. Along with this it allows Internet access for passengers and users of vehicles. A significant characteristic while studying VANETs is the requirement of having a mobility model that gives aspects of real vehicular traffic. These scenarios play an important role in performance of VANETs. In our paper we have demonstration and description of generating realistic mobility model using various tools such as eWorld, OpenStreetMap, SUMO and TraNS. Generated mobility scenario is added to NS-2.34 (Network Simulator) for analysis of DSR and AODV routing protocol under 802.11p (DSRC/WAVE) and 802.11a. Results after analysis shows 802.11p is more suitable than 802.11a for VANET.Comment: 4 pages, 6 figures, International Journal of Computer Applicatio

    Simulation of Mixed Critical In-vehicular Networks

    Full text link
    Future automotive applications ranging from advanced driver assistance to autonomous driving will largely increase demands on in-vehicular networks. Data flows of high bandwidth or low latency requirements, but in particular many additional communication relations will introduce a new level of complexity to the in-car communication system. It is expected that future communication backbones which interconnect sensors and actuators with ECU in cars will be built on Ethernet technologies. However, signalling from different application domains demands for network services of tailored attributes, including real-time transmission protocols as defined in the TSN Ethernet extensions. These QoS constraints will increase network complexity even further. Event-based simulation is a key technology to master the challenges of an in-car network design. This chapter introduces the domain-specific aspects and simulation models for in-vehicular networks and presents an overview of the car-centric network design process. Starting from a domain specific description language, we cover the corresponding simulation models with their workflows and apply our approach to a related case study for an in-car network of a premium car

    Vehicle Navigation Service Based on Real-Time Traffic Information

    Get PDF
    GNSS-assisted vehicle navigation services are nowadays very common in most of the developed countries. However, most of those services are either delivered through proprietary technologies, or fall short in flexibility because of the limited capability to couple road information with real-time traffic information. This paper presents the motivations and a brief summary of a vehicle navigation service based on real-time traffic information, delivered through an open protocol that is currently under standardization in the Open Mobile Alliance forum

    Applying OGC sensor web enablement to ocean observing systems

    Get PDF
    The complexity of marine installations for ocean observing systems has grown significantly in recent years. In a network consisting of tens, hundreds or thousands of marine instruments, manual configuration and integration becomes very challenging. Simplifying the integration process in existing or newly established observing systems would benefit system operators and is important for the broader application of different sensors. This article presents an approach for the automatic configuration and integration of sensors into an interoperable Sensor Web infrastructure. First, the sensor communication model, based on OGC's SensorML standard, is utilized. It serves as a generic driver mechanism since it enables the declarative and detailed description of a sensor's protocol. Finally, we present a data acquisition architecture based on the OGC PUCK protocol that enables storage and retrieval of the SensorML document from the sensor itself, and automatic integration of sensors into an interoperable Sensor Web infrastructure. Our approach adopts Efficient XML Interchange (EXI) as alternative serialization form of XML or JSON. It solves the bandwidth problem of XML and JSON.Peer ReviewedPostprint (author's final draft

    Multi Agent Systems in Logistics: A Literature and State-of-the-art Review

    Get PDF
    Based on a literature survey, we aim to answer our main question: “How should we plan and execute logistics in supply chains that aim to meet today’s requirements, and how can we support such planning and execution using IT?†Today’s requirements in supply chains include inter-organizational collaboration and more responsive and tailored supply to meet specific demand. Enterprise systems fall short in meeting these requirements The focus of planning and execution systems should move towards an inter-enterprise and event-driven mode. Inter-organizational systems may support planning going from supporting information exchange and henceforth enable synchronized planning within the organizations towards the capability to do network planning based on available information throughout the network. We provide a framework for planning systems, constituting a rich landscape of possible configurations, where the centralized and fully decentralized approaches are two extremes. We define and discuss agent based systems and in particular multi agent systems (MAS). We emphasize the issue of the role of MAS coordination architectures, and then explain that transportation is, next to production, an important domain in which MAS can and actually are applied. However, implementation is not widespread and some implementation issues are explored. In this manner, we conclude that planning problems in transportation have characteristics that comply with the specific capabilities of agent systems. In particular, these systems are capable to deal with inter-organizational and event-driven planning settings, hence meeting today’s requirements in supply chain planning and execution.supply chain;MAS;multi agent systems
    corecore