116,812 research outputs found

    Modeling, Analysis, and Hard Real-time Scheduling of Adaptive Streaming Applications

    Get PDF
    In real-time systems, the application's behavior has to be predictable at compile-time to guarantee timing constraints. However, modern streaming applications which exhibit adaptive behavior due to mode switching at run-time, may degrade system predictability due to unknown behavior of the application during mode transitions. Therefore, proper temporal analysis during mode transitions is imperative to preserve system predictability. To this end, in this paper, we initially introduce Mode Aware Data Flow (MADF) which is our new predictable Model of Computation (MoC) to efficiently capture the behavior of adaptive streaming applications. Then, as an important part of the operational semantics of MADF, we propose the Maximum-Overlap Offset (MOO) which is our novel protocol for mode transitions. The main advantage of this transition protocol is that, in contrast to self-timed transition protocols, it avoids timing interference between modes upon mode transitions. As a result, any mode transition can be analyzed independently from the mode transitions that occurred in the past. Based on this transition protocol, we propose a hard real-time analysis as well to guarantee timing constraints by avoiding processor overloading during mode transitions. Therefore, using this protocol, we can derive a lower bound and an upper bound on the earliest starting time of the tasks in the new mode during mode transitions in such a way that hard real-time constraints are respected.Comment: Accepted for presentation at EMSOFT 2018 and for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) as part of the ESWEEK-TCAD special issu

    Analysis of Dynamic Memory Bandwidth Regulation in Multi-core Real-Time Systems

    Full text link
    One of the primary sources of unpredictability in modern multi-core embedded systems is contention over shared memory resources, such as caches, interconnects, and DRAM. Despite significant achievements in the design and analysis of multi-core systems, there is a need for a theoretical framework that can be used to reason on the worst-case behavior of real-time workload when both processors and memory resources are subject to scheduling decisions. In this paper, we focus our attention on dynamic allocation of main memory bandwidth. In particular, we study how to determine the worst-case response time of tasks spanning through a sequence of time intervals, each with a different bandwidth-to-core assignment. We show that the response time computation can be reduced to a maximization problem over assignment of memory requests to different time intervals, and we provide an efficient way to solve such problem. As a case study, we then demonstrate how our proposed analysis can be used to improve the schedulability of Integrated Modular Avionics systems in the presence of memory-intensive workload.Comment: Accepted for publication in the IEEE Real-Time Systems Symposium (RTSS) 2018 conferenc

    Real-Time Task Migration for Dynamic Resource Management in Many-Core Systems

    Get PDF

    Replica determinism and flexible scheduling in hard real-time dependable systems

    Get PDF
    Fault-tolerant real-time systems are typically based on active replication where replicated entities are required to deliver their outputs in an identical order within a given time interval. Distributed scheduling of replicated tasks, however, violates this requirement if on-line scheduling, preemptive scheduling, or scheduling of dissimilar replicated task sets is employed. This problem of inconsistent task outputs has been solved previously by coordinating the decisions of the local schedulers such that replicated tasks are executed in an identical order. Global coordination results either in an extremely high communication effort to agree on each schedule decision or in an overly restrictive execution model where on-line scheduling, arbitrary preemptions, and nonidentically replicated task sets are not allowed. To overcome these restrictions, a new method, called timed messages, is introduced. Timed messages guarantee deterministic operation by presenting consistent message versions to the replicated tasks. This approach is based on simulated common knowledge and a sparse time base. Timed messages are very effective since they neither require communication between the local scheduler nor do they restrict usage of on-line flexible scheduling, preemptions and nonidentically replicated task sets

    Hard Real-Time Networking on Firewire

    Get PDF
    This paper investigates the possibility of using standard, low-cost, widely used FireWire as a new generation fieldbus medium for real-time distributed control applications. A real-time software subsystem, RT-FireWire was designed that can, in combination with Linux-based real-time operating system, provide hard real-time communication over FireWire. In addition, a high-level module that can emulate Ethernet over RT-FireWire was implemented. This additional module enables existing IP-based real-time communication frameworks to work on top of FireWire. The real-time behavior of RT-FireWire was demonstrated with a simple control setup. Furthermore, an outlook of the future development on RT-FireWire is given

    Performance analysis of a Master/Slave switched Ethernet for military embedded applications

    Get PDF
    Current military communication network is a generation old and is no longer effective in meeting the emerging requirements imposed by the next generation military embedded applications. A new communication network based upon Full Duplex Switched Ethernet is proposed in this paper to overcome these limitations. To allow existing military subsystems to be easily supported by a Switched Ethernet network, our proposal consists in keeping their current centralized communication scheme by using an optimized master/slave transmission control on Switched Ethernet thanks to the Flexible Time Triggered (FTT) paradigm. Our main objective is to assess the performance of such a proposal and estimate the quality of service we can expect in terms of latency. Using the Network Calculus formalism, schedulability analysis are determined. These analysis are illustrated in the case of a realistic military embedded application extracted from a real military aircraft network, to highlight the proposal's ability to support the required time constrained communications
    corecore