8,965 research outputs found

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Challenges in the Design and Implementation of IoT Testbeds in Smart-Cities : A Systematic Review

    Get PDF
    Advancements in wireless communication and the increased accessibility to low-cost sensing and data processing IoT technologies have increased the research and development of urban monitoring systems. Most smart city research projects rely on deploying proprietary IoT testbeds for indoor and outdoor data collection. Such testbeds typically rely on a three-tier architecture composed of the Endpoint, the Edge, and the Cloud. Managing the system's operation whilst considering the security and privacy challenges that emerge, such as data privacy controls, network security, and security updates on the devices, is challenging. This work presents a systematic study of the challenges of developing, deploying and managing urban monitoring testbeds, as experienced in a series of urban monitoring research projects, followed by an analysis of the relevant literature. By identifying the challenges in the various projects and organising them under the V-model development lifecycle levels, we provide a reference guide for future projects. Understanding the challenges early on will facilitate current and future smart-cities IoT research projects to reduce implementation time and deliver secure and resilient testbeds

    Towards A Practical High-Assurance Systems Programming Language

    Full text link
    Writing correct and performant low-level systems code is a notoriously demanding job, even for experienced developers. To make the matter worse, formally reasoning about their correctness properties introduces yet another level of complexity to the task. It requires considerable expertise in both systems programming and formal verification. The development can be extremely costly due to the sheer complexity of the systems and the nuances in them, if not assisted with appropriate tools that provide abstraction and automation. Cogent is designed to alleviate the burden on developers when writing and verifying systems code. It is a high-level functional language with a certifying compiler, which automatically proves the correctness of the compiled code and also provides a purely functional abstraction of the low-level program to the developer. Equational reasoning techniques can then be used to prove functional correctness properties of the program on top of this abstract semantics, which is notably less laborious than directly verifying the C code. To make Cogent a more approachable and effective tool for developing real-world systems, we further strengthen the framework by extending the core language and its ecosystem. Specifically, we enrich the language to allow users to control the memory representation of algebraic data types, while retaining the automatic proof with a data layout refinement calculus. We repurpose existing tools in a novel way and develop an intuitive foreign function interface, which provides users a seamless experience when using Cogent in conjunction with native C. We augment the Cogent ecosystem with a property-based testing framework, which helps developers better understand the impact formal verification has on their programs and enables a progressive approach to producing high-assurance systems. Finally we explore refinement type systems, which we plan to incorporate into Cogent for more expressiveness and better integration of systems programmers with the verification process

    Machine learning and mixed reality for smart aviation: applications and challenges

    Get PDF
    The aviation industry is a dynamic and ever-evolving sector. As technology advances and becomes more sophisticated, the aviation industry must keep up with the changing trends. While some airlines have made investments in machine learning and mixed reality technologies, the vast majority of regional airlines continue to rely on inefficient strategies and lack digital applications. This paper investigates the state-of-the-art applications that integrate machine learning and mixed reality into the aviation industry. Smart aerospace engineering design, manufacturing, testing, and services are being explored to increase operator productivity. Autonomous systems, self-service systems, and data visualization systems are being researched to enhance passenger experience. This paper investigate safety, environmental, technological, cost, security, capacity, and regulatory challenges of smart aviation, as well as potential solutions to ensure future quality, reliability, and efficiency

    Keeping the Organization in the Loop as a General Concept for Human-Centered AI: The Example of Medical Imaging

    Get PDF
    This study emanates from work on human-centered AI and the claim of “keeping the organiza-tion in the loop”. A previous study suggests a sys-tematic framework of organizational practices in the context of predictive maintenance, and identified four cycles: using AI, customizing AI, original task handling with support of AI, and dealing with con-textual changes. Since we assume that these findings can be generalized for other kinds of applications of Machine Learning (ML), we contrast the manage-ment activities that support the four cycles and their interplay with a widely different domain: the usage of AI for radiology. Our literature analysis reveals a series of overlaps with the existing framework, but also results in the need for extensions, such as holis-tic consideration of workflows or supervision and quality assurance

    Design and Development of 3-Axis Benchtop CNC Milling Machine for Educational Purpose

    Get PDF
    The main factor in improving learning skills is providing students with hands-on laboratory experience, and the small-scale machine can accomplish academic programs requiring students to learn machining skills. This paper aims to design and develop a 3-axis CNC milling machine with a PC-based open architecture controller in a vertical position open frame structure. Some technical specifications were randomly selected based on the capabilities of similarly sized machines reviewed in previous work. The designed machine consisted of inexpensive off-the-shelf hardware components capable of machining the sample block with high cutting speed and reasonable precision. The accepted percentage error of circular and straightness test readings is below the set requirements. This machine is not intended for series production and precise machining. It can still effectively replace the high cost of commercial CNC machines and be used in any higher education institution offering technical courses

    A review of natural language processing in contact centre automation

    Get PDF
    Contact centres have been highly valued by organizations for a long time. However, the COVID-19 pandemic has highlighted their critical importance in ensuring business continuity, economic activity, and quality customer support. The pandemic has led to an increase in customer inquiries related to payment extensions, cancellations, and stock inquiries, each with varying degrees of urgency. To address this challenge, organizations have taken the opportunity to re-evaluate the function of contact centres and explore innovative solutions. Next-generation platforms that incorporate machine learning techniques and natural language processing, such as self-service voice portals and chatbots, are being implemented to enhance customer service. These platforms offer robust features that equip customer agents with the necessary tools to provide exceptional customer support. Through an extensive review of existing literature, this paper aims to uncover research gaps and explore the advantages of transitioning to a contact centre that utilizes natural language solutions as the norm. Additionally, we will examine the major challenges faced by contact centre organizations and offer reco
    corecore