150,148 research outputs found

    Automated Test Input Generation for Android: Are We There Yet?

    Full text link
    Mobile applications, often simply called "apps", are increasingly widespread, and we use them daily to perform a number of activities. Like all software, apps must be adequately tested to gain confidence that they behave correctly. Therefore, in recent years, researchers and practitioners alike have begun to investigate ways to automate apps testing. In particular, because of Android's open source nature and its large share of the market, a great deal of research has been performed on input generation techniques for apps that run on the Android operating systems. At this point in time, there are in fact a number of such techniques in the literature, which differ in the way they generate inputs, the strategy they use to explore the behavior of the app under test, and the specific heuristics they use. To better understand the strengths and weaknesses of these existing approaches, and get general insight on ways they could be made more effective, in this paper we perform a thorough comparison of the main existing test input generation tools for Android. In our comparison, we evaluate the effectiveness of these tools, and their corresponding techniques, according to four metrics: code coverage, ability to detect faults, ability to work on multiple platforms, and ease of use. Our results provide a clear picture of the state of the art in input generation for Android apps and identify future research directions that, if suitably investigated, could lead to more effective and efficient testing tools for Android

    The free cash flow theory of takeovers: a financial perspective on mergers and acquisitions and the economy

    Get PDF
    Consolidation and merger of corporations ; Stock market ; Corporations ; Cash flow

    Automatically Discovering, Reporting and Reproducing Android Application Crashes

    Full text link
    Mobile developers face unique challenges when detecting and reporting crashes in apps due to their prevailing GUI event-driven nature and additional sources of inputs (e.g., sensor readings). To support developers in these tasks, we introduce a novel, automated approach called CRASHSCOPE. This tool explores a given Android app using systematic input generation, according to several strategies informed by static and dynamic analyses, with the intrinsic goal of triggering crashes. When a crash is detected, CRASHSCOPE generates an augmented crash report containing screenshots, detailed crash reproduction steps, the captured exception stack trace, and a fully replayable script that automatically reproduces the crash on a target device(s). We evaluated CRASHSCOPE's effectiveness in discovering crashes as compared to five state-of-the-art Android input generation tools on 61 applications. The results demonstrate that CRASHSCOPE performs about as well as current tools for detecting crashes and provides more detailed fault information. Additionally, in a study analyzing eight real-world Android app crashes, we found that CRASHSCOPE's reports are easily readable and allow for reliable reproduction of crashes by presenting more explicit information than human written reports.Comment: 12 pages, in Proceedings of 9th IEEE International Conference on Software Testing, Verification and Validation (ICST'16), Chicago, IL, April 10-15, 2016, pp. 33-4

    Network hierarchy evolution and system vulnerability in power grids

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.The seldom addressed network hierarchy property and its relationship with vulnerability analysis for power transmission grids from a complex-systems point of view are given in this paper. We analyze and compare the evolution of network hierarchy for the dynamic vulnerability evaluation of four different power transmission grids of real cases. Several meaningful results suggest that the vulnerability of power grids can be assessed by means of a network hierarchy evolution analysis. First, the network hierarchy evolution may be used as a novel measurement to quantify the robustness of power grids. Second, an antipyramidal structure appears in the most robust network when quantifying cascading failures by the proposed hierarchy metric. Furthermore, the analysis results are also validated and proved by empirical reliability data. We show that our proposed hierarchy evolution analysis methodology could be used to assess the vulnerability of power grids or even other networks from a complex-systems point of view.Peer ReviewedPostprint (author's final draft

    ATTACK2VEC: Leveraging Temporal Word Embeddings to Understand the Evolution of Cyberattacks

    Full text link
    Despite the fact that cyberattacks are constantly growing in complexity, the research community still lacks effective tools to easily monitor and understand them. In particular, there is a need for techniques that are able to not only track how prominently certain malicious actions, such as the exploitation of specific vulnerabilities, are exploited in the wild, but also (and more importantly) how these malicious actions factor in as attack steps in more complex cyberattacks. In this paper we present ATTACK2VEC, a system that uses temporal word embeddings to model how attack steps are exploited in the wild, and track how they evolve. We test ATTACK2VEC on a dataset of billions of security events collected from the customers of a commercial Intrusion Prevention System over a period of two years, and show that our approach is effective in monitoring the emergence of new attack strategies in the wild and in flagging which attack steps are often used together by attackers (e.g., vulnerabilities that are frequently exploited together). ATTACK2VEC provides a useful tool for researchers and practitioners to better understand cyberattacks and their evolution, and use this knowledge to improve situational awareness and develop proactive defenses
    • …
    corecore