1,367 research outputs found

    Wireless model-based predictive networked control system over cooperative wireless network

    Get PDF
    Owing to their distributed architecture, networked control systems (NCSs) are proven to be feasible in scenarios where a spatially distributed feedback control system is required. Traditionally, such NCSs operate over real-time wired networks. Recently, in order to achieve the utmost flexibility, scalability, ease of deployment, and maintainability, wireless networks such as IEEE 802.11 wireless local area networks (LANs) are being preferred over dedicated wired networks. However, conventional NCSs with event-triggered controllers and actuators cannot operate over such general purpose wireless networks since the stability of the system is compromised due to unbounded delays and unpredictable packet losses that are typical in the wireless medium. Approaching the wireless networked control problem from two perspectives, this work introduces a practical wireless NCS and an implementation of a cooperative medium access control protocol that work jointly to achieve decent control under severe impairments, such as unbounded delay, bursts of packet loss and ambient wireless traffic. The proposed system is evaluated on a dedicated test platform under numerous scenarios and significant performance gains are observed, making cooperative communications a strong candidate for improving the reliability of industrial wireless networks

    JiTS: Just-in-Time Scheduling for Real-Time Sensor Data Dissemination

    Full text link
    We consider the problem of real-time data dissemination in wireless sensor networks, in which data are associated with deadlines and it is desired for data to reach the sink(s) by their deadlines. To this end, existing real-time data dissemination work have developed packet scheduling schemes that prioritize packets according to their deadlines. In this paper, we first demonstrate that not only the scheduling discipline but also the routing protocol has a significant impact on the success of real-time sensor data dissemination. We show that the shortest path routing using the minimum number of hops leads to considerably better performance than Geographical Forwarding, which has often been used in existing real-time data dissemination work. We also observe that packet prioritization by itself is not enough for real-time data dissemination, since many high priority packets may simultaneously contend for network resources, deteriorating the network performance. Instead, real-time packets could be judiciously delayed to avoid severe contention as long as their deadlines can be met. Based on this observation, we propose a Just-in-Time Scheduling (JiTS) algorithm for scheduling data transmissions to alleviate the shortcomings of the existing solutions. We explore several policies for non-uniformly delaying data at different intermediate nodes to account for the higher expected contention as the packet gets closer to the sink(s). By an extensive simulation study, we demonstrate that JiTS can significantly improve the deadline miss ratio and packet drop ratio compared to existing approaches in various situations. Notably, JiTS improves the performance requiring neither lower layer support nor synchronization among the sensor nodes

    LPDQ: a self-scheduled TDMA MAC protocol for one-hop dynamic lowpower wireless networks

    Get PDF
    Current Medium Access Control (MAC) protocols for data collection scenarios with a large number of nodes that generate bursty traffic are based on Low-Power Listening (LPL) for network synchronization and Frame Slotted ALOHA (FSA) as the channel access mechanism. However, FSA has an efficiency bounded to 36.8% due to contention effects, which reduces packet throughput and increases energy consumption. In this paper, we target such scenarios by presenting Low-Power Distributed Queuing (LPDQ), a highly efficient and low-power MAC protocol. LPDQ is able to self-schedule data transmissions, acting as a FSA MAC under light traffic and seamlessly converging to a Time Division Multiple Access (TDMA) MAC under congestion. The paper presents the design principles and the implementation details of LPDQ using low-power commercial radio transceivers. Experiments demonstrate an efficiency close to 99% that is independent of the number of nodes and is fair in terms of resource allocation.Peer ReviewedPostprint (author’s final draft

    Predictive Duty Cycle Adaptation for Wireless Camera Networks

    Get PDF
    Wireless sensor networks (WSN) typically employ dynamic duty cycle schemes to efficiently handle different patterns of communication traffic in the network. However, existing duty cycling approaches are not suitable for event-driven WSN, in particular, camera-based networks designed to track humans and objects. A characteristic feature of such networks is the spatially-correlated bursty traffic that occurs in the vicinity of potentially highly mobile objects. In this paper, we propose a concept of indirect sensing in the MAC layer of a wireless camera network and an active duty cycle adaptation scheme based on Kalman filter that continuously predicts and updates the location of the object that triggers bursty communication traffic in the network. This prediction allows the camera nodes to alter their communication protocol parameters prior to the actual increase in the communication traffic. Our simulations demonstrate that our active adaptation strategy outperforms TMAC not only in terms of energy efficiency and communication latency, but also in terms of TIBPEA, a QoS metric for event-driven WSN

    How to Choose the Relevant MAC Protocol for Wireless Smart Parking Urban Networks?

    Get PDF
    Parking sensor network is rapidly deploying around the world and is regarded as one of the first implemented urban services in smart cities. To provide the best network performance, the MAC protocol shall be adaptive enough in order to satisfy the traffic intensity and variation of parking sensors. In this paper, we study the heavy-tailed parking and vacant time models from SmartSantander, and then we apply the traffic model in the simulation with four different kinds of MAC protocols, that is, contention-based, schedule-based and two hybrid versions of them. The result shows that the packet interarrival time is no longer heavy-tailed while collecting a group of parking sensors, and then choosing an appropriate MAC protocol highly depends on the network configuration. Also, the information delay is bounded by traffic and MAC parameters which are important criteria while the timely message is required.Comment: The 11th ACM International Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks (2014

    Precise Packet Loss Pattern Generation by Intentional Interference

    Get PDF
    Abstract—Intermediate-quality links often cause vulnerable connectivity in wireless sensor networks, but packet losses caused by such volatile links are not easy to trace. In order to equip link layer protocol designers with a reliable test and debugging tool, we develop a reactive interferer to generate packet loss patterns precisely. By using intentional interference to emulate parameterized lossy links with very low intrusiveness, our tool facilitates both robustness evaluation of protocols and flaw detection in protocol implementation
    • …
    corecore