2,215 research outputs found

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    A Survey on Multimedia-Based Cross-Layer Optimization in Visual Sensor Networks

    Get PDF
    Visual sensor networks (VSNs) comprised of battery-operated electronic devices endowed with low-resolution cameras have expanded the applicability of a series of monitoring applications. Those types of sensors are interconnected by ad hoc error-prone wireless links, imposing stringent restrictions on available bandwidth, end-to-end delay and packet error rates. In such context, multimedia coding is required for data compression and error-resilience, also ensuring energy preservation over the path(s) toward the sink and improving the end-to-end perceptual quality of the received media. Cross-layer optimization may enhance the expected efficiency of VSNs applications, disrupting the conventional information flow of the protocol layers. When the inner characteristics of the multimedia coding techniques are exploited by cross-layer protocols and architectures, higher efficiency may be obtained in visual sensor networks. This paper surveys recent research on multimedia-based cross-layer optimization, presenting the proposed strategies and mechanisms for transmission rate adjustment, congestion control, multipath selection, energy preservation and error recovery. We note that many multimedia-based cross-layer optimization solutions have been proposed in recent years, each one bringing a wealth of contributions to visual sensor networks

    Network Coding-Assisted Retransmission Scheme for Video- Streaming Services over Wireless Access Networks

    Get PDF
    Video-streaming services, such as Internet protocol television, promising the delivery of multimedia contents over wireless access networks to clients whenever and wherever, are becoming more and more popular. However, scarce radio resources, lossy characteristics of wireless links and high bandwidth demands pose the never-ending challenges for provisioning of real-time streaming services over wireless networks in a timely and reliable manner. Furthermore, a wireless channel may suffer from interference and multipath fading, which may cause random packet losses. In addition, wireless link layer does not provide a retransmission mechanism for multicast/broadcast traffic. This would significantly impact the clients’ quality of experience of streaming services. Traditional unicast retransmission solutions improve client’s quality, at the bandwidth expense, because every lost packet must be retransmitted separately. This chapter presents and practically evaluates a retransmission scheme for video-streaming services over last mile wireless networks. It is based on network coding techniques that increase the overall performance by means of reducing the number of physical transmissions, in comparison to traditional unicast retransmission approach, resulting in reduced bandwidth consumption. Thus, the Internet service providers can increase the number of clients over the same infrastructure or, alternatively, offer more services to the clients
    • …
    corecore