710 research outputs found

    Intra-Body Communications for Nervous System Applications: Current Technologies and Future Directions

    Full text link
    The Internet of Medical Things (IoMT) paradigm will enable next generation healthcare by enhancing human abilities, supporting continuous body monitoring and restoring lost physiological functions due to serious impairments. This paper presents intra-body communication solutions that interconnect implantable devices for application to the nervous system, challenging the specific features of the complex intra-body scenario. The presented approaches include both speculative and implementative methods, ranging from neural signal transmission to testbeds, to be applied to specific neural diseases therapies. Also future directions in this research area are considered to overcome the existing technical challenges mainly associated with miniaturization, power supply, and multi-scale communications.Comment: https://www.sciencedirect.com/science/article/pii/S138912862300163

    Wireless neural interface for chronic recording

    Get PDF
    Journal ArticleA primary goal of the Integrated Neural Interface Project (INIP) is to develop a wireless, implantable device capable of recording neural activity from 100 micromachined electrodes. The heart of this recording system is a low-power integrated circuit that amplifies 100 weak neural signals, detects spikes with programmable threshold-crossing circuits, and returns these data via digital radio telemetry. The chip receives power, clock, and command signals through a coil-to-coil inductive link. Here we report that the isolated integrated circuit successfully recorded and wirelessly transmitted digitized electrical activity from peripheral nerve and cortex at 15.7 kS/s. The chip also simultaneously performed accurate on-chip spike detection and wirelessly transmitted the spike threshold-crossing data. We also present preliminary successful results from full system integration and packaging

    Design and Implementation of a Passive Neurostimulator with Wireless Resonance-Coupled Power Delivery and Demonstration on Frog Sciatic Nerve and Gastrocnemius Muscle

    Get PDF
    The thesis presented has four goals: to perform a comprehensive literature review on current neurostimulator technology; to outline the current issues with the state-of-the-art; to provide a neurostimulator design that solves these issues, and to characterize the design and demonstrate its neurostimulation features. The literature review describes the physiology of a neuron, and then proceeds to outline neural interfaces and neurostimulators. The neurostimulator design process is then outlined and current requirements in the field are described. The novel neurostimulator circuit that implements a solution that has wireless capability, passive control, and small size is outlined and characterized. The circuit is demonstrated to operate wirelessly with a resonance-coupled multi-channel implementation, and is shown powering LEDs. The circuit was then fabricated in a miniature implementation which utilized a 10 x 20 x 3 mm&179 antenna, and occupied a volume approximating 1 cm&179. This miniature circuit is used to stimulate frog sciatic nerve and gastrocnemius muscle in vitro. These demonstrations and characterization show the device is capable of neurostimulation, can operate wirelessly, is controlled passively, and can be implemented in a small size, thus solving the aforementioned neurostimulator requirements. Further work in this area is focused on developing an extensive characterization of the device and the wireless power delivery system, optimizing the circuit design, and performing in vivo experiments with restoration of motor control in injured animals. This device shows promise to provide a comprehensive solution to many application-specific problems in neurostimulation, and be a modular addition to larger neural interface systems

    Design and Optimization of a Low DC Offset in Implanted System for ENG Recording Based on Velocity Selectivity Method

    Full text link
    The major target of this paper is the design of advance signal processing system based on minimized length of bits required for digital-to-analogy converter (DAC) for velocity selectivity recording (VSR) approach. The main application of this device is peripheral nerves recording (electroneurogram-ENG) by exploring a spectral analysis for the propagation of neural activities in the velocity domain recording using VSR in implantable application. This research adapted a flexible, compact, andnbspenergynbspefficient dc offset removal circuit. An optimization design has been used based on best possible process involving linearity and area is thus suggested. The system process acquired using this approach were characterized as having a 10-bit signal processing for DAC resolution, with 1.4 mA rms output current, with minimum size around 0.02 mm2nbspof chip area, using FPGA board as prototype design. This paper also explores the design temperature vibration in online recording minimization the output DC offset decrease the heat emission which is significantly for long term implementation applications. This study proposed an analysis circuit configuration demonstrate that this approach could achieve a small DC offset error, with small size required

    Developing and Evaluating a Flexible Wireless Microcoil Array Based Integrated Interface for Epidural Cortical Stimulation.

    Get PDF
    Stroke leads to serious long-term disability. Electrical epidural cortical stimulation has made significant improvements in stroke rehabilitation therapy. We developed a preliminary wireless implantable passive interface, which consists of a stimulating surface electrode, receiving coil, and single flexible passive demodulated circuit printed by flexible printed circuit (FPC) technique and output pulse voltage stimulus by inductively coupling an external circuit. The wireless implantable board was implanted in cats\u27 unilateral epidural space for electrical stimulation of the primary visual cortex (V1) while the evoked responses were recorded on the contralateral V1 using a needle electrode. The wireless implantable board output stable monophasic voltage stimuli. The amplitude of the monophasic voltage output could be adjusted by controlling the voltage of the transmitter circuit within a range of 5-20 V. In acute experiment, cortico-cortical evoked potential (CCEP) response was recorded on the contralateral V1. The amplitude of N2 in CCEP was modulated by adjusting the stimulation intensity of the wireless interface. These results demonstrated that a wireless interface based on a microcoil array can offer a valuable tool for researchers to explore electrical stimulation in research and the dura mater-electrode interface can effectively transmit electrical stimulation

    Neuromorphic hardware for somatosensory neuroprostheses

    Get PDF
    In individuals with sensory-motor impairments, missing limb functions can be restored using neuroprosthetic devices that directly interface with the nervous system. However, restoring the natural tactile experience through electrical neural stimulation requires complex encoding strategies. Indeed, they are presently limited in effectively conveying or restoring tactile sensations by bandwidth constraints. Neuromorphic technology, which mimics the natural behavior of neurons and synapses, holds promise for replicating the encoding of natural touch, potentially informing neurostimulation design. In this perspective, we propose that incorporating neuromorphic technologies into neuroprostheses could be an effective approach for developing more natural human-machine interfaces, potentially leading to advancements in device performance, acceptability, and embeddability. We also highlight ongoing challenges and the required actions to facilitate the future integration of these advanced technologies

    A Bidirectional ASIC for Active Microchannel Neural Interfaces

    Get PDF
    Closed-loop neural prostheses have been widely used as a therapeutic strategy for a range of neurological, inflammatory, and cardiac disorders. Vagus nerve stimulation has shown promising results for the monitoring and treatment of post-operation symptoms of heart transplant recipients. A prime candidate for selective control of vagal fibres is the microchannel neural interface (MNI), which provides a suitable environment for neural growth and enables effective control of the neural activity in a bidirectional system. This paper presents the design and simulation of an ASIC in 180-nm high-voltage CMOS technology, capable of concurrent stimulation and neural recording with artifact reduction in a seven-channel MNI. The analog front-end amplifies action potentials with a gain of 40 dB, presenting a common-mode rejection ratio of 81 dB at 1 kHz and a noise efficiency factor of 5.13 over the 300 Hz to 5 kHz recording bandwidth. A 42-V-compliant stimulation module operates concurrently and independently across the seven channels
    • …
    corecore