2,739 research outputs found

    Development of a wireless displacement measurement system using acceleration responses

    Get PDF
    Displacement measurements are useful information for various engineering applications such as structural health monitoring (SHM), earthquake engineering and system identification. Most existing displacement measurement methods are costly, labor-intensive, and have difficulties particularly when applying to full-scale civil structures because the methods require stationary reference points. Indirect estimation methods converting acceleration to displacement can be a good alternative as acceleration transducers are generally cost-effective, easy to install, and have low noise. However, the application of acceleration-based methods to full-scale civil structures such as long span bridges is challenging due to the need to install cables to connect the sensors to a base station. This article proposes a low-cost wireless displacement measurement system using acceleration. Developed with smart sensors that are low-cost, wireless, and capable of on-board computation, the wireless displacement measurement system has significant potential to impact many applications that need displacement information at multiple locations of a structure. The system implements an FIR-filter type displacement estimation algorithm that can remove low frequency drifts typically caused by numerical integration of discrete acceleration signals. To verify the accuracy and feasibility of the proposed system, laboratory tests are carried out using a shaking table and on a three storey shear building model, experimentally confirming the effectiveness of the proposed system.open3

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    Smart FRP Composite Sandwich Bridge Decks in Cold Regions

    Get PDF
    INE/AUTC 12.0

    Wireless Sensors for Health Monitoring of Marine Structures and Machinery

    Get PDF
    Remote structural and machinery health monitoring (SMHM) of marine structures such as ships, oil and gas rigs, freight container terminals, and marine energy platforms can ensure their reliability. However, the wired sensors currently used in these applications are difficult and expensive to install and maintain. Wireless Sensor Networks (WSN) can potentially replace them but there are significant capability gaps that currently prevent their long-term deployment in the harsh marine environment and the structurally-complex, compartmentalised, all-metal scenarios with high volume occupancy of piping, ducting and operational machinery represented by marine structures. These gaps are in sensing, processing and communication hardware and firmware capabilities, reduction of power consumption, hardware assembly and packaging for reliability in the marine environment, reliability of wireless connectivity in the complex metal structures, and software for WSN deployment planning in the marine environment. Taken together, these gaps highlight the need for a systems integration methodology for marine SMHM and this is the focus of the research presented in this thesis. The research takes an applied approach by first designing the hardware and firmware for two wireless sensing modules specifically for marine SMHM, one a novel eddy-current-based 3D module for measuring multi-axis metal structural displacement, the second a fully integrated module for monitoring of structure and machinery reliability. The research then addresses module assembly and packaging methods to ensure reliability in the marine environment, the development of an efficient methodology for characterising the reliability of wireless connectivity in complex metal structures, and development of user interface software for planning WSN deployment and for managing the collection of WSN data. These are then individually and collectively characterised and tested for performance and reliability in laboratory, land-based and marine deployments. In addition to the research outcomes in each of these individual aspects, the overall research outcome represents a systems integration methodology that now allows deployment, with a high expectation of reliability of marine SMHM WSNs

    LOCAL POSITIONING SYSTEMS VERSUS STRUCTURAL MONITORING: A REVIEW

    Get PDF
    SUMMARY Structural monitoring and structural health monitoring could take advantage from different devices to record the static or dynamic response of a structure. A positioning system provides displacement information on the location of moving objects, which is assumed to be the basic support to calibrate any structural mechanics model. The global positioning system could provide satisfactory accuracy in absolute displacement measurements. But the requirements of an open area position for the antennas and a roofed room for its data storage and power supply limit its flexibility and its applications. Several efforts are done to extend its field of application. The alternative is local positioning system. Non-contact sensors can be easily installed on existing infrastructure in different locations without changing their properties: several technological approaches have been exploited: laser-based, radar-based, vision-based, etc. In this paper, a number of existing options, together with their performances, are reviewed. Copyright © 2014 John Wiley & Sons, Ltd

    Wireless wake-up sensor network for structural health monitoring of large-scale highway bridges

    Get PDF
    To realize in-situ structural health monitoring of critical infrastructure such as bridges, we present a powerful, but also low power and flexible, wireless sensor node utilizing a wake-up transceiver. The sensor node is equipped with several kinds of sensors, such as temperature, pressure and acceleration for in-situ monitoring of critical infrastructure. In addition to these commonly used sensors in wireless sensor networks, some nodes are equipped with global navigation satellite system receivers (GNSS) and others with tilt and acceleration sensors of very high accuracy that were developed by Nothrop Grumman LITEF GmbH. We present a low power wakeup multi-hop routing protocol that is able to transmit data with little overhead by supporting the use of wake-up receivers in combination with long-range communication radios. The wireless sensor nodes and the routing protocol are tested at a large-scale highway bridge in south-west Germany, where a prototype network was installed in June 2015 following a first test installation earlier in June at the same bridge. A gateway node equipped with a Global System for Mobile Communications (GSM) modem transfers the network data to a remote server located at the University of Freiburg

    D5.1 SHM digital twin requirements for residential, industrial buildings and bridges

    Get PDF
    This deliverable presents a report of the needs for structural control on buildings (initial imperfections, deflections at service, stability, rheology) and on bridges (vibrations, modal shapes, deflections, stresses) based on state-of-the-art image-based and sensor-based techniques. To this end, the deliverable identifies and describes strategies that encompass state-of-the-art instrumentation and control for infrastructures (SHM technologies).Objectius de Desenvolupament Sostenible::8 - Treball Decent i Creixement EconòmicObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraPreprin

    Open-source digital technologies for low-cost monitoring of historical constructions

    Get PDF
    This paper shows new possibilities of using novel, open-source, low-cost platforms for the structural health monitoring of heritage structures. The objective of the study is to present an assessment of increasingly available open-source digital modeling and fabrication technologies in order to identify the suitable counterparts of the typical components of a continuous static monitoring system for a historical construction. The results of the research include a simple case-study, which is presented with low-cost, open-source, calibrated components, as well as an assessment of different alternatives for deploying basic structural health monitoring arrangements. The results of the research show the great potential of these existing technologies that may help to promote a widespread and cost-efficient monitoring of the built cultural heritage. Such scenario may contribute to the onset of commonplace digital records of historical constructions in an open-source, versatile and reliable fashion.Peer ReviewedPostprint (author's final draft
    corecore