123 research outputs found

    Exploiting graph structures for computational efficiency

    Get PDF
    Coping with NP-hard graph problems by doing better than simply brute force is a field of significant practical importance, and which have also sparked wide theoretical interest. One route to cope with such hard graph problems is to exploit structures which can possibly be found in the input data or in the witness for a solution. In the framework of parameterized complexity, we attempt to quantify such structures by defining numbers which describe "how structured" the graph is. We then do a fine-grained classification of its computational complexity, where not only the input size, but also the structural measure in question come in to play. There is a number of structural measures called width parameters, which includes treewidth, clique-width, and mim-width. These width parameters can be compared by how many classes of graphs that have bounded width. In general there is a tradeoff; if more graph classes have bounded width, then fewer problems can be efficiently solved with the aid of a small width; and if a width is bounded for only a few graph classes, then it is easier to design algorithms which exploit the structure described by the width parameter. For each of the mentioned width parameters, there are known meta-theorems describing algorithmic results for a wide array of graph problems. Hence, showing that decompositions with bounded width can be found for a certain graph class yields algorithmic results for the given class. In the current thesis, we show that several graph classes have bounded width measures, which thus gives algorithmic consequences. Algorithms which are FPT or XP parameterized by width parameters are exploiting structure of the input graph. However, it is also possible to exploit structures that are required of a witness to the solution. We use this perspective to give a handful of polynomial-time algorithms for NP-hard problems whenever the witness belongs to certain graph classes. It is also possible to combine structures of the input graph with structures of the solution witnesses in order to obtain parameterized algorithms, when each structure individually is provably insufficient to provide so under standard complexity assumptions. We give an example of this in the final chapter of the thesis

    The Neighborhood Polynomial of Chordal Graphs

    Full text link
    The neighborhood polynomial of a graph GG is the generating function of subsets of vertices in GG that have a common neighbor. In this paper we study the neighborhood polynomial and the complexity of its computation for chordal graphs. We will show that it is \NP-hard to compute the neighborhood polynomial on general chordal graphs. Furthermore we will introduce a parameter for chordal graphs called anchor width and an algorithm to compute the neighborhood polynomial which runs in polynomial time if the anchor width is polynomially bounded. Finally we will show that we can bound the anchor width for chordal comparability graphs and chordal graphs with bounded leafage. The leafage of a chordal graphs is the minimum number of leaves in the host tree of a subtree representation. In particular, interval graphs have leafage at most 2. This shows that the anchor width of interval graphs is at most quadratic

    Parameterized Complexity of Equitable Coloring

    Full text link
    A graph on nn vertices is equitably kk-colorable if it is kk-colorable and every color is used either ⌊n/k⌋\left\lfloor n/k \right\rfloor or ⌈n/k⌉\left\lceil n/k \right\rceil times. Such a problem appears to be considerably harder than vertex coloring, being NP-Complete\mathsf{NP\text{-}Complete} even for cographs and interval graphs. In this work, we prove that it is W[1]-Hard\mathsf{W[1]\text{-}Hard} for block graphs and for disjoint union of split graphs when parameterized by the number of colors; and W[1]-Hard\mathsf{W[1]\text{-}Hard} for K1,4K_{1,4}-free interval graphs when parameterized by treewidth, number of colors and maximum degree, generalizing a result by Fellows et al. (2014) through a much simpler reduction. Using a previous result due to Dominique de Werra (1985), we establish a dichotomy for the complexity of equitable coloring of chordal graphs based on the size of the largest induced star. Finally, we show that \textsc{equitable coloring} is FPT\mathsf{FPT} when parameterized by the treewidth of the complement graph

    Bounding the mim-width of hereditary graph classes

    Get PDF
    • …
    corecore