474 research outputs found

    Interaction-aware development environments: recording, mining, and leveraging IDE interactions to analyze and support the development flow

    Get PDF
    Nowadays, software development is largely carried out using Integrated Development Environments, or IDEs. An IDE is a collection of tools and facilities to support the most diverse software engineering activities, such as writing code, debugging, and program understanding. The fact that they are integrated enables developers to find all the tools needed for the development in the same place. Each activity is composed of many basic events, such as clicking on a menu item in the IDE, opening a new user interface to browse the source code of a method, or adding a new statement in the body of a method. While working, developers generate thousands of these interactions, that we call fine-grained IDE interaction data. We believe this data is a valuable source of information that can be leveraged to enable better analyses and to offer novel support to developers. However, this data is largely neglected by modern IDEs. In this dissertation we propose the concept of "Interaction-Aware Development Environments": IDEs that collect, mine, and leverage the interactions of developers to support and simplify their workflow. We formulate our thesis as follows: Interaction-Aware Development Environments enable novel and in- depth analyses of the behavior of software developers and set the ground to provide developers with effective and actionable support for their activities inside the IDE. For example, by monitoring how developers navigate source code, the IDE could suggest the program entities that are potentially relevant for a particular task. Our research focuses on three main directions: 1. Modeling and Persisting Interaction Data. The first step to make IDEs aware of interaction data is to overcome its ephemeral nature. To do so we have to model this new source of data and to persist it, making it available for further use. 2. Interpreting Interaction Data. One of the biggest challenges of our research is making sense of the millions of interactions generated by developers. We propose several models to interpret this data, for example, by reconstructing high-level development activities from interaction histories or measure the navigation efficiency of developers. 3. Supporting Developers with Interaction Data. Novel IDEs can use the potential of interaction data to support software development. For example, they can identify the UI components that are potentially unnecessary for the future and suggest developers to close them, reducing the visual cluttering of the IDE

    An examination of artificial neural networks /

    Get PDF

    Run-time Variability with First-class Contexts

    Get PDF
    Software must be regularly updated to keep up with changing requirements. Unfortunately, to install an update, the system must usually be restarted, which is inconvenient and costly. In this dissertation, we aim at overcoming the need for restart by enabling run-time changes at the programming language level. We argue that the best way to achieve this goal is to improve the support for encapsulation, information hiding and late binding by contextualizing behavior. In our approach, behavioral variations are encapsulated into context objects that alter the behavior of other objects locally. We present three contextual language features that demonstrate our approach. First, we present a feature to evolve software by scoping variations to threads. This way, arbitrary objects can be substituted over time without compromising safety. Second, we present a variant of dynamic proxies that operate by delegation instead of forwarding. The proxies can be used as building blocks to implement contextualization mechanisms from within the language. Third, we contextualize the behavior of objects to intercept exchanges of references between objects. This approach scales information hiding from objects to aggregates. The three language features are supported by formalizations and case studies, showing their soundness and practicality. With these three complementary language features, developers can easily design applications that can accommodate run-time changes

    Parallel processing and expert systems

    Get PDF
    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 1990s cannot enjoy an increased level of autonomy without the efficient implementation of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real-time demands are met for larger systems. Speedup via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial laboratories in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems is surveyed. The survey discusses multiprocessors for expert systems, parallel languages for symbolic computations, and mapping expert systems to multiprocessors. Results to date indicate that the parallelism achieved for these systems is small. The main reasons are (1) the body of knowledge applicable in any given situation and the amount of computation executed by each rule firing are small, (2) dividing the problem solving process into relatively independent partitions is difficult, and (3) implementation decisions that enable expert systems to be incrementally refined hamper compile-time optimization. In order to obtain greater speedups, data parallelism and application parallelism must be exploited

    Augmenting IDEs with Runtime Information for Software Maintenance

    Get PDF
    Object-oriented language features such as inheritance, abstract types, late-binding, or polymorphism lead to distributed and scattered code, rendering a software system hard to understand and maintain. The integrated development environment (IDE), the primary tool used by developers to maintain software systems, usually purely operates on static source code and does not reveal dynamic relationships between distributed source artifacts, which makes it difficult for developers to understand and navigate software systems. Another shortcoming of today's IDEs is the large amount of information with which they typically overwhelm developers. Large software systems encompass several thousand source artifacts such as classes and methods. These static artifacts are presented by IDEs in views such as trees or source editors. To gain an understanding of a system, developers have to open many such views, which leads to a workspace cluttered with different windows or tabs. Navigating through the code or maintaining a working context is thus difficult for developers working on large software systems. In this dissertation we address the question how to augment IDEs with dynamic information to better navigate scattered code while at the same time not overwhelming developers with even more information in the IDE views. We claim that by first reducing the amount of information developers have to deal with, we are subsequently able to embed dynamic information in the familiar source perspectives of IDEs to better comprehend and navigate large software spaces. We propose means to reduce or mitigate the information by highlighting relevant source elements, by explicitly representing working context, and by automatically housekeeping the workspace in the IDE. We then improve navigation of scattered code by explicitly representing dynamic collaboration and software features in the static source perspectives of IDEs. We validate our claim by conducting empirical experiments with developers and by analyzing recorded development sessions

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache
    • …
    corecore