349 research outputs found

    Weighted Linear Matroid Parity

    Get PDF
    The matroid parity (or matroid matching) problem, introduced as a common generalization of matching and matroid intersection problems, is so general that it requires an exponential number of oracle calls. Nevertheless, Lovasz (1978) showed that this problem admits a min-max formula and a polynomial algorithm for linearly represented matroids. Since then efficient algorithms have been developed for the linear matroid parity problem. This talk presents a recently developed polynomial-time algorithm for the weighted linear matroid parity problem. The algorithm builds on a polynomial matrix formulation using Pfaffian and adopts a primal-dual approach based on the augmenting path algorithm of Gabow and Stallmann (1986) for the unweighted problem

    Robust randomized matchings

    Full text link
    The following game is played on a weighted graph: Alice selects a matching MM and Bob selects a number kk. Alice's payoff is the ratio of the weight of the kk heaviest edges of MM to the maximum weight of a matching of size at most kk. If MM guarantees a payoff of at least α\alpha then it is called α\alpha-robust. In 2002, Hassin and Rubinstein gave an algorithm that returns a 1/21/\sqrt{2}-robust matching, which is best possible. We show that Alice can improve her payoff to 1/ln(4)1/\ln(4) by playing a randomized strategy. This result extends to a very general class of independence systems that includes matroid intersection, b-matchings, and strong 2-exchange systems. It also implies an improved approximation factor for a stochastic optimization variant known as the maximum priority matching problem and translates to an asymptotic robustness guarantee for deterministic matchings, in which Bob can only select numbers larger than a given constant. Moreover, we give a new LP-based proof of Hassin and Rubinstein's bound

    Shortest Disjoint S-Paths Via Weighted Linear Matroid Parity

    Get PDF

    FPT-Algorithms for the l-Matchoid Problem with Linear and Submodular Objectives

    Full text link
    We design a fixed-parameter deterministic algorithm for computing a maximum weight feasible set under a \ell-matchoid of rank kk, parameterized by \ell and kk. Unlike previous work that presumes linear representativity of matroids, we consider the general oracle model. Our result, combined with the lower bounds of Lovasz, and Jensen and Korte, demonstrates a separation between the \ell-matchoid and the matroid \ell-parity problems in the setting of fixed-parameter tractability. Our algorithms are obtained by means of kernelization: we construct a small representative set which contains an optimal solution. Such a set gives us much flexibility in adapting to other settings, allowing us to optimize not only a linear function, but also several important submodular functions. It also helps to transform our algorithms into streaming algorithms. In the streaming setting, we show that we can find a feasible solution of value zz and the number of elements to be stored in memory depends only on zz and \ell but totally independent of nn. This shows that it is possible to circumvent the recent space lower bound of Feldman et al., by parameterizing the solution value. This result, combined with existing lower bounds, also provides a new separation between the space and time complexity of maximizing an arbitrary submodular function and a coverage function in the value oracle model
    corecore