21,166 research outputs found

    Variance heterogeneity in experimental design

    Get PDF
    Statistical Methods

    Design of Experiments for Screening

    Full text link
    The aim of this paper is to review methods of designing screening experiments, ranging from designs originally developed for physical experiments to those especially tailored to experiments on numerical models. The strengths and weaknesses of the various designs for screening variables in numerical models are discussed. First, classes of factorial designs for experiments to estimate main effects and interactions through a linear statistical model are described, specifically regular and nonregular fractional factorial designs, supersaturated designs and systematic fractional replicate designs. Generic issues of aliasing, bias and cancellation of factorial effects are discussed. Second, group screening experiments are considered including factorial group screening and sequential bifurcation. Third, random sampling plans are discussed including Latin hypercube sampling and sampling plans to estimate elementary effects. Fourth, a variety of modelling methods commonly employed with screening designs are briefly described. Finally, a novel study demonstrates six screening methods on two frequently-used exemplars, and their performances are compared

    Experimental Design for Sensitivity Analysis, Optimization and Validation of Simulation Models

    Get PDF
    This chapter gives a survey on the use of statistical designs for what-if analysis in simula- tion, including sensitivity analysis, optimization, and validation/verification. Sensitivity analysis is divided into two phases. The first phase is a pilot stage, which consists of screening or searching for the important factors among (say) hundreds of potentially important factors. A novel screening technique is presented, namely sequential bifurcation. The second phase uses regression analysis to approximate the input/output transformation that is implied by the simulation model; the resulting regression model is also known as a metamodel or a response surface. Regression analysis gives better results when the simu- lation experiment is well designed, using either classical statistical designs (such as frac- tional factorials) or optimal designs (such as pioneered by Fedorov, Kiefer, and Wolfo- witz). To optimize the simulated system, the analysts may apply Response Surface Metho- dology (RSM); RSM combines regression analysis, statistical designs, and steepest-ascent hill-climbing. To validate a simulation model, again regression analysis and statistical designs may be applied. Several numerical examples and case-studies illustrate how statisti- cal techniques can reduce the ad hoc character of simulation; that is, these statistical techniques can make simulation studies give more general results, in less time. Appendix 1 summarizes confidence intervals for expected values, proportions, and quantiles, in termi- nating and steady-state simulations. Appendix 2 gives details on four variance reduction techniques, namely common pseudorandom numbers, antithetic numbers, control variates or regression sampling, and importance sampling. Appendix 3 describes jackknifing, which may give robust confidence intervals.least squares;distribution-free;non-parametric;stopping rule;run-length;Von Neumann;median;seed;likelihood ratio

    Sensitivity analysis and optimization of system dynamics models: Regression analysis and statistical design of experiments

    Get PDF
    This tutorial discusses what-if analysis and optimization of System Dynamics models. These problems are solved, using the statistical techniques of regression analysis and design of experiments (DOE). These issues are illustrated by applying the statistical techniques to a System Dynamics model for coal transportation, taken from Wolstenholme's book "System Enquiry: a System Dynamics Approach" (1990). The regression analysis uses the least squares algorithm. DOE uses classic designs, namely, fractional factorials and central composite designs. Compared with intuitive approaches, DOE is more efficient: DOE gives more accurate estimators of input effects. Moreover DOE is more effective: interactions are estimable too. The System Dynamics model is also optimized. A heuristic is derived, inspired by Response Surface Methodology (RSM) but accounting for constraints. Some remaining pertinent problems are briefly discussed, namely DOE for cases with many factors, and DOE for random System Dynamics models. Conclusions are presented for the case study, and general principles are derived. Finally 23 references are given for further study.Regression Analysis;Experimental Design;System Dynamics Models;statistics

    Sensitivity analysis and related analysis: A survey of statistical techniques

    Get PDF
    This paper reviews the state of the art in five related types of analysis, namely (i) sensitivity or what-if analysis, (ii) uncertainty or risk analysis, (iii) screening, (iv) validation, and (v) optimization. The main question is: when should which type of analysis be applied; which statistical techniques may then be used? This paper distinguishes the following five stages in the analysis of a simulation model. 1) Validation: the availability of data on the real system determines which type of statistical technique to use for validation. 2) Screening: in the simulation's pilot phase the really important inputs can be identified through a novel technique, called sequential bifurcation, which uses aggregation and sequential experimentation. 3) Sensitivity analysis: the really important inputs should be This approach with its five stages implies that sensitivity analysis should precede uncertainty analysis. This paper briefly discusses several case studies for each phase.Experimental Design;Statistical Methods;Regression Analysis;Risk Analysis;Least Squares;Sensitivity Analysis;Optimization;Perturbation;statistics
    corecore