6,388 research outputs found

    The efficiency of individual optimization in the conditions of competitive growth

    Full text link
    The paper aims to discuss statistical properties of the multi-agent based model of competitive growth. Each of the agents is described by growth (or decay) rule of its virtual "mass" with the rate affected by the interaction with other agents. The interaction depends on the strategy vector and mutual distance between agents and both are subjected to the agent's individual optimization process. Steady-state simulations yield phase diagrams with the high and low competition phases (HCP and LCP, respectively) separated by critical point. Particular focus has been made on the indicators of the power-law behavior of the mass distributions with respect to the critical regime. In this regime the study has revealed remarkable anomaly in the optimization efficiency

    Optimal Microgrid Topology Design and Siting of Distributed Generation Sources Using a Multi-Objective Substrate Layer Coral Reefs Optimization Algorithm

    Get PDF
    n this work, a problem of optimal placement of renewable generation and topology design for a Microgrid (MG) is tackled. The problem consists of determining the MG nodes where renewable energy generators must be optimally located and also the optimization of the MG topology design, i.e., deciding which nodes should be connected and deciding the lines’ optimal cross-sectional areas (CSA). For this purpose, a multi-objective optimization with two conflicting objectives has been used, utilizing the cost of the lines, C, higher as the lines’ CSA increases, and the MG energy losses, E, lower as the lines’ CSA increases. To characterize generators and loads connected to the nodes, on-site monitored annual energy generation and consumption profiles have been considered. Optimization has been carried out by using a novel multi-objective algorithm, the Multi-objective Substrate Layers Coral Reefs Optimization algorithm (Mo-SL-CRO). The performance of the proposed approach has been tested in a realistic simulation of a MG with 12 nodes, considering photovoltaic generators and micro-wind turbines as renewable energy generators, as well as the consumption loads from different commercial and industrial sites. We show that the proposed Mo-SL-CRO is able to solve the problem providing good solutions, better than other well-known multi-objective optimization techniques, such as NSGA-II or multi-objective Harmony Search algorithm.This research was partially funded by Ministerio de Economía, Industria y Competitividad, project number TIN2017-85887-C2-1-P and TIN2017-85887-C2-2-P, and by the Comunidad Autónoma de Madrid, project number S2013ICE-2933_02

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Performance comparison of various probability gate assisted binary lightning search algorithm

    Get PDF
    Recently, many new nature-inspired optimization algorithms have been introduced to further enhance the computational intelligence optimization algorithms. Among them, lightning search algorithm (LSA) is a recent heuristic optimization method for resolving continuous problems. It mimics the natural phenomenon of lightning to find out the global optimal solution around the search space. In this paper, a suitable technique to formulate binary version of lightning search algorithm (BLSA) is presented. Three common probability transfer functions, namely, logistic sigmoid, tangent hyperbolic sigmoid and quantum bit rotating gate are investigated to be utilized in the original LSA. The performances of three transfer functions based BLSA is evaluated using various standard functions with different features and the results are compared with other four famous heuristic optimization techniques. The comparative study clearly reveals that tangent hyperbolic transfer function is the most suitable function that can be utilized in the binary version of LSA

    Computational Chemotaxis in Ants and Bacteria over Dynamic Environments

    Full text link
    Chemotaxis can be defined as an innate behavioural response by an organism to a directional stimulus, in which bacteria, and other single-cell or multicellular organisms direct their movements according to certain chemicals in their environment. This is important for bacteria to find food (e.g., glucose) by swimming towards the highest concentration of food molecules, or to flee from poisons. Based on self-organized computational approaches and similar stigmergic concepts we derive a novel swarm intelligent algorithm. What strikes from these observations is that both eusocial insects as ant colonies and bacteria have similar natural mechanisms based on stigmergy in order to emerge coherent and sophisticated patterns of global collective behaviour. Keeping in mind the above characteristics we will present a simple model to tackle the collective adaptation of a social swarm based on real ant colony behaviors (SSA algorithm) for tracking extrema in dynamic environments and highly multimodal complex functions described in the well-know De Jong test suite. Later, for the purpose of comparison, a recent model of artificial bacterial foraging (BFOA algorithm) based on similar stigmergic features is described and analyzed. Final results indicate that the SSA collective intelligence is able to cope and quickly adapt to unforeseen situations even when over the same cooperative foraging period, the community is requested to deal with two different and contradictory purposes, while outperforming BFOA in adaptive speed. Results indicate that the present approach deals well in severe Dynamic Optimization problems.Comment: 8 pages, 6 figures, in CEC 07 - IEEE Congress on Evolutionary Computation, ISBN 1-4244-1340-0, pp. 1009-1017, Sep. 200

    Fingerprint recognition based on shark smell optimization and genetic algorithm

    Get PDF
    Fingerprint recognition is a dominant form of biometric due to its distinctiveness. The study aims to extract and select the best features of fingerprint images, and evaluate the strength of the Shark Smell Optimization (SSO) and Genetic Algorithm (GA) in the search space with a chosen set of metrics. The proposed model consists of seven phases namely, enrollment, image preprocessing by using weighted median filter, feature extraction by using SSO, weight generation by using Chebyshev polynomial first kind (CPFK), feature selection by using GA, creation of a user’s database, and matching features by using Euclidean distance (ED). The effectiveness of the proposed model’s algorithms and performance is evaluated on 150 real fingerprint images that were collected from university students by the ZKTeco scanner at Sulaimani city, Iraq. The system’s performance was measured by three renowned error rate metrics, namely, False Acceptance Rate (FAR), False Rejection Rate (FRR), and Correct Verification Rate (CVR). The experimental outcome showed that the proposed fingerprint recognition model was exceedingly accurate recognition because of a low rate of both FAR and FRR, with a high CVR percentage gained which was 0.00, 0.00666, and 99.334%, respectively. This finding would be useful for improving biometric secure authentication based fingerprint. It is also possibly applied to other research topics such as fraud detection, e-payment, and other real-life applications authentication

    A Parallel Genetic Algorithm for Optimizing Multicellular Models Applied to Biofilm Wrinkling

    Get PDF
    Multiscale computational models integrating sub-cellular, cellular, and multicellular levels can be powerful tools that help researchers replicate, understand, and predict multicellular biological phenomena. To leverage their potential, these models need correct parameter values, which specify cellular physiology and affect multicellular outcomes. This work presents a robust parameter optimization method, utilizing a parallel and distributed genetic-algorithm software package. A genetic algorithm was chosen because of its superiority in fitting complex functions for which mathematical techniques are less suited. Searching for optimal parameters proceeds by comparing the multicellular behavior of a simulated system to that of a real biological system on the basis of features extracted from each which capture high-level, emergent multicellular outcomes. The goal is to find the set of parameters which minimizes discrepancy between the two sets of features. The method is first validated by demonstrating its effectiveness on synthetic data, then it is applied to calibrating a simple mechanical model of biofilm wrinkling, a common type of morphology observed in biofilms. Spatiotemporal convergence of cellular movement derived from experimental observations of different strains of Bacillus subtilis colonies is used as the basis of comparison
    corecore