710 research outputs found

    Evaluation of Arrowhead Framework in Condition Monitoring Application

    Get PDF
    The technological advancement in the field of electronics and information technology is changing how industrial automation systems are built. This phenomenon is commonly referred to as the fourth industrial revolution. However, before this prophecy on the change can manifest, new architectural solutions are needed to fully leverage the abilities brought by cheaper sensors, more advanced communication technology and more powerful processing units. The Arrowhead Framework tries to tackle this problem by providing means for Service-oriented architecture via System-of-Systems approach, where so-called application systems consume services provided by so-called core systems, which provide means for service discovery, service registration and service authorization. The goal of the thesis was to evaluate The Arrowhead Framework by developing a demo application on the edge-cloud setup used in the condition monitoring system of vibrating screens manufactured by Metso. The demo applications objective was to ease the configuration and installation of industrial Linux PC’s at the edge of the network. The methodological model for the evaluation was based on the design science research process (DSRP), which provides a model for research of IT artefacts. As a result, the Arrowhead Framework’s core features were found helpful in the problem domain, and suitable for small-scale test setup. However, the implementation of the framework was found to be low quality and lacking features from a production-ready software artefact. The found shortcomings were reported as feedback for the ongoing development process of the framework

    A viability plan of a unit of research in applications of new telecommunications technologies

    Get PDF
    This project is about to develop a plan to create a dedicated unit in order to monitoring of emerging technologies in the field of telecommunications

    Framework and Methodology for Establishing Port-City Policies Based on Real-Time Composite Indicators and IoT: A Practical Use-Case

    Full text link
    [EN] During the past few decades, the combination of flourishing maritime commerce and urban population increases has made port-cities face several challenges. Smart Port-Cities of the future will take advantage of the newest IoT technologies to tackle those challenges in a joint fashion from both the city and port side. A specific matter of interest in this work is how to obtain reliable, measurable indicators to establish port-city policies for mutual benefit. This paper proposes an IoTbased software framework, accompanied with a methodology for defining, calculating, and predicting composite indicators that represent real-world phenomena in the context of a Smart PortCity. This paper envisions, develops, and deploys the framework on a real use-case as a practice experiment. The experiment consists of deploying a composite index for monitoring traffic congestion at the port-city interface in Thessaloniki (Greece). Results were aligned with the expectations, validated through nine scenarios, concluding with delivery of a useful tool for interested actors at Smart Port-Cities to work over and build policies upon.This research was funded, by the European Commission, via the agency INEA, under the H2020-project PIXEL, grant number 769355, and, when applicable, by the H2020-project DataPorts, grant number 871493, via the DG-CONNECT agency.Lacalle, I.; Belsa, A.; Vaño, R.; Palau Salvador, CE. (2020). Framework and Methodology for Establishing Port-City Policies Based on Real-Time Composite Indicators and IoT: A Practical Use-Case. Sensors. 20(15):1-41. https://doi.org/10.3390/s20154131S1412015Urban Population Growthhttps://www.who.int/gho/urban_health/situation_trends/urban_population_growth_text/en/Smart Port Cityhttps://maritimestreet.fr/smart-port-city/The World’s 33 Megacitieshttps://www.msn.com/en-us/money/realestate/the-worlds-33-megacities/ar-BBUaR3vDocksTheFuture Project Maritime Traffic Analysis and Forecast Review-Key Resultshttps://www.docksthefuture.eu/wp-content/uploads/2020/04/Attachment_0-2019-09-09T135818.886-1.pdfHamburg Port Authority: SmartPORThttps://www.hamburg-port-authority.de/en/hpa-360/smartport/Guo, H., Wang, L., Chen, F., & Liang, D. (2014). Scientific big data and Digital Earth. Chinese Science Bulletin, 59(35), 5066-5073. doi:10.1007/s11434-014-0645-3AIVP Agenda 2030 for Sustainable Port-Citieshttps://www.aivpagenda2030.com/Urban Transport Challengeshttps://transportgeography.org/?page_id=4621Passenger Cars in the EUhttps://ec.europa.eu/eurostat/statistics-explained/index.php/Passenger_cars_in_the_EUAverage CO2 Emissions from New Cars and Vans Registered in Europe Increased in 2018, Requiring Significant Emission Reductions to Meet the 2020 Targetshttps://ec.europa.eu/clima/news/average-co2-emissions-new-cars-and-vans-registered-europe-increased-2018-requiring-significant_en7 Smart City Solutions to Reduce Traffic Congestionhttps://www.geotab.com/blog/reduce-traffic-congestion/The Port and the City—Thoughts on the Relation between Cities and Portshttps://theportandthecity.wordpress.com/Yau, K.-L. A., Peng, S., Qadir, J., Low, Y.-C., & Ling, M. H. (2020). Towards Smart Port Infrastructures: Enhancing Port Activities Using Information and Communications Technology. IEEE Access, 8, 83387-83404. doi:10.1109/access.2020.2990961Two Projects Led by Valenciaport Win the IAPH World Port Sustainability Awards 2020—Valenciaporthttps://www.valenciaport.com/en/two-projects-led-by-valenciaport-win-the-iaph-world-port-sustainability-awards-2020/Ahlgren, B., Hidell, M., & Ngai, E. C.-H. (2016). Internet of Things for Smart Cities: Interoperability and Open Data. IEEE Internet Computing, 20(6), 52-56. doi:10.1109/mic.2016.124Inkinen, T., Helminen, R., & Saarikoski, J. (2019). Port Digitalization with Open Data: Challenges, Opportunities, and Integrations. Journal of Open Innovation: Technology, Market, and Complexity, 5(2), 30. doi:10.3390/joitmc5020030Analytical Report 4: Open Datain Citieshttps://www.europeandataportal.eu/sites/default/files/edp_analytical_report_n4_-_open_data_in_cities_v1.0_final.pdfAnalytical Report 6: Open Datain Cities 2https://www.europeandataportal.eu/sites/default/files/edp_analytical_report_n6_-_open_data_in_cities_2_-_final-clean.pdfINTER-IoT Deliverableshttps://inter-iot.eu/deliverablesActivage Project D3.1 Report on IoT European Platformshttps://www.activageproject.eu/docs/downloads/activage_public_deliverables/ACTIVAGE_D3.1_M3_ReportonIoTEuropeanPlatforms_V1.0.pdfThe Open Source Platform for Our Smart Digital Future—FIWAREhttps://www.fiware.org/FIWARE Data Modelshttps://fiware-datamodels.readthedocs.io/en/latest/index.htmlApache Kafkahttps://kafka.apache.org/FIWARE Orion Context Brokerhttps://fiware-orion.readthedocs.io/en/master/Saborido, R., & Alba, E. (2020). Software systems from smart city vendors. Cities, 101, 102690. doi:10.1016/j.cities.2020.102690Santana, E. F. Z., Chaves, A. P., Gerosa, M. A., Kon, F., & Milojicic, D. S. (2018). Software Platforms for Smart Cities. ACM Computing Surveys, 50(6), 1-37. doi:10.1145/3124391Smart Citieshttps://www.fiware.org/community/smart-cities/Araujo, V., Mitra, K., Saguna, S., & Åhlund, C. (2019). Performance evaluation of FIWARE: A cloud-based IoT platform for smart cities. Journal of Parallel and Distributed Computing, 132, 250-261. doi:10.1016/j.jpdc.2018.12.010Ismagilova, E., Hughes, L., Dwivedi, Y. K., & Raman, K. R. (2019). Smart cities: Advances in research—An information systems perspective. International Journal of Information Management, 47, 88-100. doi:10.1016/j.ijinfomgt.2019.01.004Albino, V., Berardi, U., & Dangelico, R. M. (2015). Smart Cities: Definitions, Dimensions, Performance, and Initiatives. Journal of Urban Technology, 22(1), 3-21. doi:10.1080/10630732.2014.942092Alavi, A. H., Jiao, P., Buttlar, W. G., & Lajnef, N. (2018). Internet of Things-enabled smart cities: State-of-the-art and future trends. Measurement, 129, 589-606. doi:10.1016/j.measurement.2018.07.067Samih, H. (2019). Smart cities and internet of things. Journal of Information Technology Case and Application Research, 21(1), 3-12. doi:10.1080/15228053.2019.1587572Lanza, J., Sánchez, L., Gutiérrez, V., Galache, J., Santana, J., Sotres, P., & Muñoz, L. (2016). Smart City Services over a Future Internet Platform Based on Internet of Things and Cloud: The Smart Parking Case. Energies, 9(9), 719. doi:10.3390/en9090719A Novel Architecture for Modelling, Virtualising and Managing the Energy Consumption of Household Appliances|AIM Project|FP7|CORDIS|European Commissionhttps://cordis.europa.eu/project/id/224621Intelligent Use of Buildings’ Energy Information|IntUBE Project|FP7|CORDIS|European Commissionhttps://cordis.europa.eu/project/id/224286Scuotto, V., Ferraris, A., & Bresciani, S. (2016). Internet of Things: applications and challenges in smart cities. A case study of IBM smart city projects. Business Process Management Journal, 22(2). doi:10.1108/bpmj-05-2015-0074Molavi, A., Lim, G. J., & Race, B. (2019). A framework for building a smart port and smart port index. International Journal of Sustainable Transportation, 14(9), 686-700. doi:10.1080/15568318.2019.1610919Moustaka, V., Vakali, A., & Anthopoulos, L. G. (2019). A Systematic Review for Smart City Data Analytics. ACM Computing Surveys, 51(5), 1-41. doi:10.1145/3239566Alam, M., Dupras, J., & Messier, C. (2016). A framework towards a composite indicator for urban ecosystem services. Ecological Indicators, 60, 38-44. doi:10.1016/j.ecolind.2015.05.035PIXEL Project D5.1 Environmental Factors and Mapping to Pilotshttps://pixel-ports.eu/wp-content/uploads/2020/05/D5.1-Environmental-aspects-and-mapping-to-pilots.pdfEconomic Sentiment Indicator—Eurostathttps://ec.europa.eu/eurostat/web/products-datasets/product?code=teibs010Human Development Index (HDI)|Human Development Reportshttp://hdr.undp.org/en/content/human-development-index-hdiCOIN|Competence Centre on Composite Indicators and Scoreboardshttps://composite-indicators.jrc.ec.europa.eu/CITYkeys Projecthttp://www.citykeys-project.eu/citykeys/homeCITYkeys D1-4 Indicators for Smart City Projects and Smart Citieshttp://nws.eurocities.eu/MediaShell/media/CITYkeysD14Indicatorsforsmartcityprojectsandsmartcities.pdfMake Healthy Choices Easier Options—Scientific Americanhttps://www.scientificamerican.com/podcast/episode/make-healthy-choices-easier-options-12-09-20/FIWARE E Interoperabilidad Para Smart Citieshttps://www.apegr.org/images/descargas/J7OctESMARTCITY/2PresentacionFIWARE.pdfChen, G., Govindan, K., & Yang, Z. (2013). Managing truck arrivals with time windows to alleviate gate congestion at container terminals. International Journal of Production Economics, 141(1), 179-188. doi:10.1016/j.ijpe.2012.03.033Patel, N., & Mukherjee, A. B. (2015). Assessment of network traffic congestion through Traffic Congestability Value (TCV): a new index. Bulletin of Geography. Socio-economic Series, 30(30), 123-134. doi:10.1515/bog-2015-0039Aimsun Live: Model Every Movement at Every Momenthttps://www.aimsun.com/aimsun-live/PTV Vissim: Traffic Simulation Softwarehttps://www.ptvgroup.com/en/solutions/products/ptv-vissim/IBM Traffic Prediction Toolhttps://researcher.watson.ibm.com/researcher/view_group_subpage.php?id=1248Veins: The Open Source Vehicular Network Simulation Frameworkhttps://veins.car2x.org/Mena-Yedra, R., Gavaldà, R., & Casas, J. (2017). Adarules: Learning rules for real-time road-traffic prediction. Transportation Research Procedia, 27, 11-18. doi:10.1016/j.trpro.2017.12.106PIXEL Projecthttps://pixel-ports.euReference Architectural Model Industrie 4.0 (rami 4.0)https://www.plattform-i40.de/PI40/Navigation/EN/Home/home.htmlSethi, P., & Sarangi, S. R. (2017). Internet of Things: Architectures, Protocols, and Applications. Journal of Electrical and Computer Engineering, 2017, 1-25. doi:10.1155/2017/9324035Containers & Containerization—The Pros and Conshttps://spin.atomicobject.com/2019/05/24/containerization-pros-cons/Pyngsi Frameworkhttps://github.com/pixel-ports/pyngsiPIXEL Project D6.2 PIXEL Information System Architecture and Design—Version 2https://pixel-ports.eu/wp-content/uploads/2020/05/D6.2-PIXEL-Information-System-architecture-and-design-v2.pdfApache Hivehttps://hive.apache.org/MySQLhttps://www.mysql.com/MariaDB Serverhttps://mariadb.org/Elasticsearchhttps://www.elastic.co/elasticsearch/MongoDBhttps://www.mongodb.com/Node-REDhttps://nodered.org/Swarm Mode Overview | Docker Documentationhttps://docs.docker.com/engine/swarm/Kuberneteshttps://kubernetes.io/PIXEL Project D6.3 PIXEL Data Acquisition, Information Hub and Data Representation v1https://pixel-ports.eu/wp-content/uploads/2020/05/D6.3_PIXEL-data-acquisition-information-hub-and-data-representation-v1.pdfOverview of Docker Compose|Docker Documentationhttps://docs.docker.com/compose/Kibana: Explore, Visualize, Discover Datahttps://www.elastic.co/kibanaGrafana: The Open Observability Platformshttps://grafana.com/Vue.jshttps://vuejs.org/PIXEL Project D5.2 PEI Definition and Algorithms v1https://pixel-ports.eu/wp-content/uploads/2020/05/D5.2-PEI-Definition-and-Algorithms-v1.pdfKeyPerformanceIndicator—FIWARE Data Modelshttps://fiware-datamodels.readthedocs.io/en/latest/KeyPerformanceIndicator/doc/spec/index.htmlWhat Is a Container?|App Containerization|Dockerhttps://www.docker.com/resources/what-containerGarcia-Alonso, L., Moura, T. G. Z., & Roibas, D. (2020). The effect of weather conditions on port technical efficiency. Marine Policy, 113, 103816. doi:10.1016/j.marpol.2020.103816TrafficThess—LIVE Traffic in Thessaloniki, Greecehttps://www.trafficthess.imet.gr/National Observatory of Athens—Meteo—Stations’ Live Data and Databasehttp://stratus.meteo.noa.gr/frontHow to Use Smart Data Models in Your Projects—FIWARE Data Modelshttps://fiware-datamodels.readthedocs.io/en/latest/howto/index.htmlGan, X., Fernandez, I. C., Guo, J., Wilson, M., Zhao, Y., Zhou, B., & Wu, J. (2017). When to use what: Methods for weighting and aggregating sustainability indicators. Ecological Indicators, 81, 491-502. doi:10.1016/j.ecolind.2017.05.068Wilson, M. C., & Wu, J. (2016). The problems of weak sustainability and associated indicators. International Journal of Sustainable Development & World Ecology, 24(1), 44-51. doi:10.1080/13504509.2015.1136360Kumar, S. V., & Vanajakshi, L. (2015). Short-term traffic flow prediction using seasonal ARIMA model with limited input data. European Transport Research Review, 7(3). doi:10.1007/s12544-015-0170-8Prophet: Forecastig at Scalehttps://facebook.github.io/prophet/PIXEL Project D4.4 PredictiveAlgorithms v2https://pixel-ports.eu/wp-content/uploads/2020/05/PIXEL_D4.4_Predictive-Algorithms_v2.0_Final.pdfProject Jupyterhttps://jupyter.org/FIWARE Cygnushttps://fiware-cygnus.readthedocs.io/en/latest/NGSIElasticsearchSink—FIWARE Cygnushttps://fiware-cygnus.readthedocs.io/en/latest/cygnus-ngsi/flume_extensions_catalogue/ngsi_elasticsearch_sink/index.htmlNode.jshttps://nodejs.org/Elasticsearch Node.js Client [7.x]https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/index.htmlApache HTTP Server Projecthttps://httpd.apache.org/Everything You Need to Know about Min-Max Normalization: A Python Tutorialhttps://towardsdatascience.com/everything-you-need-to-know-about-min-max-normalization-in-python-b79592732b79OpenStreetMaphttps://www.openstreetmap.org/Leaflet—A JavaScript Library for Interactive Mapshttps://leafletjs.com/AmCharts: JavaScript Charts & Mapshttps://www.amcharts.com/FIWARE Cataloguehttps://www.fiware.org/developers/catalogue/Findlow, S. (2019). ‘Citizenship’ and ‘Democracy Education’: identity politics or enlightened political participation? British Journal of Sociology of Education, 40(7), 1004-1013. doi:10.1080/01425692.2019.1656910Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R. H., Morrow, M. J., & Polakos, P. A. (2018). A Comprehensive Survey on Fog Computing: State-of-the-Art and Research Challenges. IEEE Communications Surveys & Tutorials, 20(1), 416-464. doi:10.1109/comst.2017.277115

    Европейский и национальный контексты в научных исследованиях

    Get PDF
    В настоящем электронном сборнике «Европейский и национальный контексты в научных исследованиях. Технология» представлены работы молодых ученых по геодезии и картографии, химической технологии и машиностроению, информационным технологиям, строительству и радиотехнике. Предназначены для работников образования, науки и производства. Будут полезны студентам, магистрантам и аспирантам университетов.=In this Electronic collected materials “National and European dimension in research. Technology” works in the fields of geodesy, chemical technology, mechanical engineering, information technology, civil engineering, and radio-engineering are presented. It is intended for trainers, researchers and professionals. It can be useful for university graduate and post-graduate students

    Smart city street lighting system: An engineering internship at Eco-FX LED

    Get PDF
    This final year honours thesis project was undertaken with Eco-FX; it involved consulting, designing and developing their new Smart City Street Lighting System. Smart Street Lighting utilises wireless control and monitoring to produce a more energy efficient and sustainable street light system. Previously, the technology and the wider community were obstacles in its development; presently with advancement in wireless low data rate protocols and support from the Western Australian Local Government Association, the development of the system is approaching its completion. To consult on the design and development for this project required vast amounts of research about the existing lighting technologies, public utilities and low data rate wireless protocols. The methodology was to research and evaluate all protocol and hardware technologies available. These technology options were presented to the relevant stakeholders for discussion; and then the final design specification was approved. The ZigBee protocol met final design specifications and requirements for Eco-FX; therefore the ZigBee Alliance was contacted to find the best approach in designing to their standard. After the guidance from the ZigBee Alliance, more research was conducted on the hardware and the services required for implementing the Smart City Street Light System. The final stage in the project was finding manufacturers and designers for the required hardware and software to develop the system in China. The previous research and evaluation provided guidance in specifying to the manufacturer and designer all the critical features required by Eco-FX in the system; and ensured all Australian and international standards were met in the manufacturing and designing process

    The development of factory templates for the integrated virtual factory framework

    Get PDF
    Páginas numeradas: I-XVI, 17-123Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores (Major Automação). Faculdade de Engenharia. Universidade do Porto. 201

    The development of factory templates for the integrated virtual factory framework

    Get PDF
    Páginas numeradas: I-XVI, 17-123Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores (Major Automação). Faculdade de Engenharia. Universidade do Porto. 201
    corecore