2,389 research outputs found

    GRIDA3—a shared resources manager for environmental data analysis and applications

    Get PDF
    GRIDA3 (Shared Resources Manager for Environmental Data Analysis and Applications) is a multidisciplinary project designed to deliver an integrated system to forge solutions to some environmental challenges such as the constant increase of polluted sites, the sustainability of natural resources usage and the forecast of extreme meteorological events. The GRIDA3 portal is mainly based on Web 2.0 technologies and EnginFrame framework. The portal, now at an advanced stage of development, provides end-users with intuitive Web-interfaces and tools that simplify job submission to the underneath computing resources. The framework manages the user authentication and authorization, then controls the action and job execution into the grid computing environment, collects the results and transforms them into an useful format on the client side. The GRIDA3 Portal framework will provide a problem-solving platform allowing, through appropriate access policies, the integration and the sharing of skills, resources and tools located at multiple sites across federated domains

    Three-dimensional geological mapping: Workshop extended abstracts

    Get PDF
    Ope

    Innovative Approaches to 3D GIS Modeling for Volumetric and Geoprocessing Applications in Subsurface Infrastructures in a Virtual Immersive Environment

    Get PDF
    As subsurface features remain largely ‘out of sight, out of mind’, this has led to challenges when dealing with underground space and infrastructures and especially so for those working in GIS. Since subsurface infrastructure plays a major role in supporting the needs of modern society, groups such as city planners and utility companies and decision makers are looking for an ‘holistic’ approach where the sustainable use of underground space is as important as above ground space. For such planning and management, it is crucial to examine subsurface data in a form that is amenable to 3D mapping and that can be used for increasingly sophisticated 3D modeling. The subsurface referred to in this study focuses particularly on examples of both shallow and deep underground infrastructures. In the case of shallow underground infrastructures mostly two-dimensional maps are used in the management and planning of these features. Depth is a very critical component of underground infrastructures that is difficult to represent in a 2D map and for this reason these are best studied in three-dimensional space. In this research, the capability of 3D GIS technology and immersive geography are explored for the storage, management, analysis, and visualization of shallow and deep subsurface features

    ACEWATER2 Regional database: hydro-climatology data-analysis

    Get PDF
    The report presents the architecture of a regional hydro-climatology information system, developed in the framework of the ACEWATER2 project, in order to support effective organization of information. Information includes both freely available large and regional scale data sources, as well as databases compiled by the CoEs (Centers of Excellence) and submitted as part of their scientific undertakings. The information system builds upon and specializes the JRC knowledge sharing platform Aquaknow (https://aquaknow.jrc.ec.europa.eu/), including: • at the system core, a relational database; its schema has been designed to store both detailed metadata and, where relevant (avoiding duplication of information otherwise accessible), data themselves. Metadata include, among others, datasets extended description, spatial extent, temporal frequency, reference Institutions/authors, credits and limitations, web links to access original data and/or any further documentation. Data can be stored as public or private, depending upon confidentialy and sharing policies; • user friendly facilities, supporting the end user in efficiently browsing, querying, uploading and downloading information (metadata and data). System access is limited to accredited audience, via password authentication. Dedicated groups for the three ACEWATER CoE networks (Western, Southern and Central-Eastern Africa) have been setup and scientists invited to register. Currently the system is operational and we submitted databases documented and, depending upon confidentiality and authorization issues, also stored. A general review and classification of freely available information at continenal, regional and local scale of interest to ACEWATER2 project, and particularly to selected study areas (Senegal, Gambia and Niger; Zambezi; Blue Nile and Lake Victoria), have been completed. Metadata and, where relevant, data themselves have been stored to the information system database. Information submitted by the CoE (a continuous ongoing process) is migrated to the database as well, depending upon sharing authorization and/or limitations. The report also documents the ongoing scientific research at JRC on climate variability analysis based on L-Moments statistics. In particular maps of estimated precipitation deficit for different return periods at the river basins of interest are presented and included in the database.JRC.D.2-Water and Marine Resource

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Proceedings. 9th 3DGeoInfo Conference 2014, [11-13 November 2014, Dubai]

    Get PDF
    It is known that, scientific disciplines such as geology, geophysics, and reservoir exploration intrinsically use 3D geo-information in their models and simulations. However, 3D geo-information is also urgently needed in many traditional 2D planning areas such as civil engineering, city and infrastructure modeling, architecture, environmental planning etc. Altogether, 3DGeoInfo is an emerging technology that will greatly influence the market within the next few decades. The 9th International 3DGeoInfo Conference aims at bringing together international state-of-the-art researchers and practitioners facilitating the dialogue on emerging topics in the field of 3D geo-information. The conference in Dubai offers an interdisciplinary forum of sub- and above-surface 3D geo-information researchers and practitioners dealing with data acquisition, modeling, management, maintenance, visualization, and analysis of 3D geo-information

    The impact of agricultural activities on water quality: a case for collaborative catchment-scale management using integrated wireless sensor networks

    No full text
    The challenge of improving water quality is a growing global concern, typified by the European Commission Water Framework Directive and the United States Clean Water Act. The main drivers of poor water quality are economics, poor water management, agricultural practices and urban development. This paper reviews the extensive role of non-point sources, in particular the outdated agricultural practices, with respect to nutrient and contaminant contributions. Water quality monitoring (WQM) is currently undertaken through a number of data acquisition methods from grab sampling to satellite based remote sensing of water bodies. Based on the surveyed sampling methods and their numerous limitations, it is proposed that wireless sensor networks (WSNs), despite their own limitations, are still very attractive and effective for real-time spatio-temporal data collection for WQM applications. WSNs have been employed for WQM of surface and ground water and catchments, and have been fundamental in advancing the knowledge of contaminants trends through their high resolution observations. However, these applications have yet to explore the implementation and impact of this technology for management and control decisions, to minimize and prevent individual stakeholder’s contributions, in an autonomous and dynamic manner. Here, the potential of WSN-controlled agricultural activities and different environmental compartments for integrated water quality management is presented and limitations of WSN in agriculture and WQM are identified. Finally, a case for collaborative networks at catchment scale is proposed for enabling cooperation among individually networked activities/stakeholders (farming activities, water bodies) for integrated water quality monitoring, control and management

    Opening up the subsurface for the cities of tomorrow Considering access to subsurface knowledge – Evaluation of practices and techniques

    Get PDF
    This report is the result of COST Action TU1206 Working Group 2, Work package 2.3, and focusses on 3D urban subsurface modelling and visualisation. The major aims of this report are: 1) evaluating current techniques and identify good practices / best efforts in 3D geological modelling and visualisation of the urban subsurface, based on case studies, and 2) co-developing (subsurface specialists & model users) requirements for optimal use of 3D geological modelling information in specific planning and policy contexts. Three major topics have been considered: • Constructing and maintaining 3D urban geological models • Modelling man-made ground • Visualising 3D urban subsurface model results To improve the use of subsurface modelling in urban planning in the future, the following challenges have been identified: • The complexity of the urban subsurface, including man-made ground, combined with the level of detail of information asked for in many urban planning issues demand that geologists look beyond their traditional data sources. • Combined 3D property modelling of the small-scale heterogeneity of man-made deposits and natural deposits requires new modelling approaches. • Management of the shallow urban subsurface requires model tools that can be frequently updated to reflect the frequently changing properties and functions of the urban subsurface. • There is a need for dynamic (4D) urban subsurface models that can be used for real-time monitoring and incorporation of time-series data on subsurface properties. • It would be cost-effective to have an actively maintained, scalable geological framework model of a city available that forms a common basis for the various kinds of dedicated models of parts of the city. • To give subsurface information a firm position in urban planning and management, geological information will have to be presented in the right format, and at the right time. It is absolutely necessary to include the subsurface infrastructure and to combine the model with above-ground information

    Big Data Management for Cloud-Enabled Geological Information Services

    Get PDF
    • …
    corecore