66,795 research outputs found

    Empirical validation of a usability inspection method for model-driven Web development

    Full text link
    Web applications should be usable in order to be accepted by users and to improve their success probability. Despite the fact that this requirement has promoted the emergence of several usability evaluation methods, there is a need for empirically validated methods that provide evidence about their effectiveness and that can be properly integrated into early stages of Web development processes. Model-driven Web development processes have grown in popularity over the last few years, and offer a suitable context in which to perform early usability evaluations due to their intrinsic traceability mechanisms. These issues have motivated us to propose a Web Usability Evaluation Process (WUEP) which can be integrated into model-driven Web development processes. This paper presents a family of experiments that we have carried out to empirically validate WUEP. The family of experiments was carried out by 64 participants, including PhD and Master¿s computer science students. The objective of the experiments was to evaluate the participants¿ effectiveness, efficiency, perceived ease of use and perceived satisfaction when using WUEP in comparison to an industrial widely used inspection method: Heuristic Evaluation (HE). The statistical analysis and meta-analysis of the data obtained separately from each experiment indicated that WUEP is more effective and efficient than HE in the detection of usability problems. The evaluators were also more satisfied when applying WUEP, and found it easier to use than HE. Although further experiments must be carried out to strengthen these results, WUEP has proved to be a promising usability inspection method for Web applications which have been developed by using model-driven development processes.The authors would like to thank all the participants in the experiments, along with the usability experts that supported certain tasks of the evaluation design stage, and of which the control group was composed. This research work is funded by the MULTIPLE project (TIN2009-13838) and the FPU program (AP2007-03731) from the Spanish Ministry of Science and Education.Fernández Martínez, A.; Abrahao Gonzales, SM.; Insfrán Pelozo, CE. (2013). Empirical validation of a usability inspection method for model-driven Web development. Journal of Systems and Software. 86(1):161-186. https://doi.org/10.1016/j.jss.2012.07.043S16118686

    Usability Inspection in Model-Driven Web Development: Empirical Validation in WebML

    Full text link
    There is a lack of empirically validated usability evaluation methods that can be applied to models in model-driven Web development. Evaluation of these models allows an early detection of usability problems perceived by the end-user. This motivated us to propose WUEP, a usability inspection method which can be integrated into different model-driven Web development processes. We previously demonstrated how WUEP can effectively be used when following the Object-Oriented Hypermedia method. In order to provide evidences about WUEP’s generalizability, this paper presents the operationalization and empirical validation of WUEP into another well-known method: WebML. The effectiveness, efficiency, perceived ease of use, and satisfaction of WUEP were evaluated in comparison to Heuristic Evaluation (HE) from the viewpoint of novice inspectors. The results show that WUEP was more effective and efficient than HE when detecting usability problems on models. Also, inspectors were satisfied when applying WUEP, and found it easier to use than HE.Fernández Martínez, A.; Abrahao Gonzales, SM.; Insfrán Pelozo, CE.; Matera, M. (2013). Usability Inspection in Model-Driven Web Development: Empirical Validation in WebML. Lecture Notes in Computer Science. 8107:740-756. doi:10.1007/978-3-642-41533-3_457407568107Abrahão, S., Iborra, E., Vanderdonckt, J.: Usability Evaluation of User Interfaces Generated with a Model-Driven Architecture Tool. In: Maturing Usability: Quality in Software, Interaction and Value, pp. 3–32. Springer (2007)Atterer, R., Schmidt, A.: Adding Usability to Web Engineering Models and Tools. In: Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 36–41. Springer, Heidelberg (2005)Basili, V., Rombach, H.: The TAME Project: Towards Improvement-Oriented Software Environments. IEEE Transactions on Software Engineering 14(6), 758–773 (1988)Briand, L., Labiche, Y., Di Penta, M., Yan-Bondoc, H.: An experimental investigation of formality in UML-based development. IEEE TSE 31(10), 833–849 (2005)Carifio, J., Perla, R.: Ten Common Misunderstandings, Misconceptions, Persistent Myths and Urban Legends about Likert Scales and Likert Response Formats and their Antidotes. Journal of Social Sciences 3(3), 106–116 (2007)Ceri, S., Fraternali, P., Bongio, A.: Web modeling language (WebML): a modeling language for designing Web sites. In: 9th International World Wide Web Conference, pp. 137–157 (2000)Ceri, S., Fraternali, P., Acerbis, R., Bongio, A., Butti, S., Ciapessoni, F., Conserva, C., Elli, R., Greppi, C., Tagliasacchi, M., Toffetti, G.: Architectural issues and solutions in the development of data-intensive Web applications. In: Proceedings of the 1st Biennial Conference on Innovative Data Systems Research, Asilomar, CA (2003)Conte, T., Massollar, J., Mendes, E., Travassos, G.H.: Usability Evaluation Based on Web Design Perspectives. In: Proceedings of the International Symposium on Empirical Software Engineering and Measurement (ESEM 2007), pp. 146–155 (2007)Fernandez, A., Insfran, E., Abrahão, S.: Usability evaluation methods for the Web: a systematic mapping study. Information and Software Technology 53, 789–817 (2011)Fernandez, A., Abrahão, S., Insfran, E.: A Web usability evaluation process for model-driven Web development. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 108–122. Springer, Heidelberg (2011)Fernandez, A., Abrahão, S., Insfran, E., Matera, M.: Further Analysis on the Validation of a Usability Inspection Method for Model-Driven Web Development. In: 6th International Symposium on Empirical Software Engineering and Measurement (ESEM 2012), pp. 153–156 (2012)Fernandez, A., Abrahão, S., Insfran, E.: Empirical Validation of a Usability Inspection Method for Model-Driven Web Development. Journal of Systems and Software 86, 161–186 (2013)Fraternali, P., Matera, M., Maurino, A.: WQA: an XSL Framework for Analyzing the Quality of Web Applications. In: Proceedings of IWWOST 2002 - ECOOP 2002 Workshop, Malaga, Spain (2002)Hornbæk, K.: Dogmas in the assessment of usability evaluation methods. Behaviour & Information Technology 29(1), 97–111 (2010)Hwang, W., Salvendy, G.: Number of people required for usability evaluation: the 10±2 rule. Communications of the ACM 53(5), 130–113 (2010)International Organization for Standardization: ISO/IEC 25000, Software Engineering – Software Product Quality Requirements and Evaluation (SQuaRE) – Guide to SQuaRE (2005)Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation. Kluwer Academic Publishers (2001)Juristo, N., Moreno, A., Sanchez-Segura, M.I.: Guidelines for eliciting usability functionalities. IEEE Transactions on Software Engineering 33(11), 744–758 (2007)Matera, M., Costabile, M.F., Garzotto, F., Paolini, P.: SUE inspection: an effective method for systematic usability evaluation of hypermedia. IEEE Transactions on Systems, Man, and Cybernetics, Part A 32(1), 93–103 (2002)Matera, M., Rizzo, F., Carughi, G.: Web Usability: Principles and Evaluation Methods. In: Web Engineering, pp. 143–180. Springer (2006)Maxwell, K.: Applied Statistics for Software Managers. Software Quality Institute Series. Prentice Hall (2002)Molina, F., Toval, A.: Integrating usability requirements that can be evaluated in design time into Model Driven Engineering of Web Information Systems. Advances in Engineering Software 40(12), 1306–1317 (2009)Moreno, N., Vallecillo, A.: Towards interoperable Web engineering methods. Journal of the American Society for Information Science and Technolog 59(7), 1073–1092 (2008)Neuwirth, C.M., Regli, S.H.: IEEE Internet Computing Special Issue on Usability and the Web 6(2) (2002)Nielsen, J.: Heuristic evaluation. In: Usability Inspection Methods. John Wiley & Sons, NY (1994)Offutt, J.: Quality attributes of Web software applications. IEEE Software: Special Issue on Software Engineering of Internet Software, 25–32 (2002)Panach, I., Condori, N., Valverde, F., Aquino, N., Pastor, O.: Understandability measurement in an early usability evaluation for MDD. In: International Symposium on Empirical Software Engineering (ESEM 2008), pp. 354–356 (2008)Webratio. Success stories, Online article, http://www.webratio.com/portal/content/en/success-storiesWohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Weslen, A.: Experimentation in Software Engineering - An Introduction. Kluwer (2000

    Context-driven progressive enhancement of mobile web applications: a multicriteria decision-making approach

    Get PDF
    Personal computing has become all about mobile and embedded devices. As a result, the adoption rate of smartphones is rapidly increasing and this trend has set a need for mobile applications to be available at anytime, anywhere and on any device. Despite the obvious advantages of such immersive mobile applications, software developers are increasingly facing the challenges related to device fragmentation. Current application development solutions are insufficiently prepared for handling the enormous variety of software platforms and hardware characteristics covering the mobile eco-system. As a result, maintaining a viable balance between development costs and market coverage has turned out to be a challenging issue when developing mobile applications. This article proposes a context-aware software platform for the development and delivery of self-adaptive mobile applications over the Web. An adaptive application composition approach is introduced, capable of autonomously bypassing context-related fragmentation issues. This goal is achieved by incorporating and validating the concept of fine-grained progressive application enhancements based on a multicriteria decision-making strategy

    Adaptive development and maintenance of user-centric software systems

    Get PDF
    A software system cannot be developed without considering the various facets of its environment. Stakeholders – including the users that play a central role – have their needs, expectations, and perceptions of a system. Organisational and technical aspects of the environment are constantly changing. The ability to adapt a software system and its requirements to its environment throughout its full lifecycle is of paramount importance in a constantly changing environment. The continuous involvement of users is as important as the constant evaluation of the system and the observation of evolving environments. We present a methodology for adaptive software systems development and maintenance. We draw upon a diverse range of accepted methods including participatory design, software architecture, and evolutionary design. Our focus is on user-centred software systems

    Identifying Agile Requirements Engineering Patterns in Industry

    Get PDF
    Agile Software Development (ASD) is gaining in popularity in today´s business world. Industry is adopting agile methodologies both to accelerate value delivery and to enhance the ability to deal with changing requirements. However, ASD has a great impact on how Requirements Engineering (RE) is carried out in agile environments. The integration of Human-Centered Design (HCD) plays an important role due to the focus on user and stakeholder involvement. To this end, we aim to introduce agile RE patterns as main objective of this paper. On the one hand, we will describe our pattern mining process based on empirical research in literature and industry. On the other hand, we will discuss our results and provide two examples of agile RE patterns. In sum, the pattern mining process identifies 41 agile RE patterns. The accumulated knowledge will be shared by means of a web application.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-RMinisterio de Economía y Competitividad TIN2016-76956-C3-2-RMinisterio de Economía y Competitividad TIN2015-71938-RED

    Investigating heuristic evaluation as a methodology for evaluating pedagogical software: An analysis employing three case studies

    Get PDF
    This paper looks specifically at how to develop light weight methods of evaluating pedagogically motivated software. Whilst we value traditional usability testing methods this paper will look at how Heuristic Evaluation can be used as both a driving force of Software Engineering Iterative Refinement and end of project Evaluation. We present three case studies in the area of Pedagogical Software and show how we have used this technique in a variety of ways. The paper presents results and reflections on what we have learned. We conclude with a discussion on how this technique might inform on the latest developments on delivery of distance learning. © 2014 Springer International Publishing

    Agile Requirements Engineering: A systematic literature review

    Get PDF
    Nowadays, Agile Software Development (ASD) is used to cope with increasing complexity in system development. Hybrid development models, with the integration of User-Centered Design (UCD), are applied with the aim to deliver competitive products with a suitable User Experience (UX). Therefore, stakeholder and user involvement during Requirements Engineering (RE) are essential in order to establish a collaborative environment with constant feedback loops. The aim of this study is to capture the current state of the art of the literature related to Agile RE with focus on stakeholder and user involvement. In particular, we investigate what approaches exist to involve stakeholder in the process, which methodologies are commonly used to present the user perspective and how requirements management is been carried out. We conduct a Systematic Literature Review (SLR) with an extensive quality assessment of the included studies. We identified 27 relevant papers. After analyzing them in detail, we derive deep insights to the following aspects of Agile RE: stakeholder and user involvement, data gathering, user perspective, integrated methodologies, shared understanding, artifacts, documentation and Non-Functional Requirements (NFR). Agile RE is a complex research field with cross-functional influences. This study will contribute to the software development body of knowledge by assessing the involvement of stakeholder and user in Agile RE, providing methodologies that make ASD more human-centric and giving an overview of requirements management in ASD.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-RMinisterio de Economía y Competitividad TIN2015-71938-RED
    corecore