1,105 research outputs found

    Ab initio thermodynamics of intrinsic oxygen vacancies in ceria

    Get PDF
    Nonstoichiometric ceria(CeO2δ_{2-\delta}) is a candidate reaction medium to facilitate two step water splitting cycles and generate hydrogen. Improving upon its thermodynamic suitability through doping requires an understanding of its vacancy thermodynamics. Using density functional theory(DFT) calculations and a cluster expansion based Monte Carlo simulations, we have studied the high temperature thermodynamics of intrinsic oxygen vacancies in ceria. The DFT+UU approach was used to get the ground state energies of various vacancy configurations in ceria, which were subsequently fit to a cluster expansion Hamiltonian to efficiently model the configurational dependence of energy. The effect of lattice vibrations was incorporated through a temperature dependent cluster expansion. Lattice Monte Carlo simulations using the cluster expansion Hamiltonian were able to detect the miscibility gap in the phase diagram of ceria. The inclusion of vibrational and electronic entropy effects made the agreement with experiments quantitative. The deviation from an ideal solution model was quantified by calculating as a function of nonstoichiometry, a) the solid state entropy from Monte Carlo simulations and b) Warren-Cowley short range order parameters of various pair clusters

    Automated computation of materials properties

    Full text link
    Materials informatics offers a promising pathway towards rational materials design, replacing the current trial-and-error approach and accelerating the development of new functional materials. Through the use of sophisticated data analysis techniques, underlying property trends can be identified, facilitating the formulation of new design rules. Such methods require large sets of consistently generated, programmatically accessible materials data. Computational materials design frameworks using standardized parameter sets are the ideal tools for producing such data. This work reviews the state-of-the-art in computational materials design, with a focus on these automated ab-initio\textit{ab-initio} frameworks. Features such as structural prototyping and automated error correction that enable rapid generation of large datasets are discussed, and the way in which integrated workflows can simplify the calculation of complex properties, such as thermal conductivity and mechanical stability, is demonstrated. The organization of large datasets composed of ab-initio\textit{ab-initio} calculations, and the tools that render them programmatically accessible for use in statistical learning applications, are also described. Finally, recent advances in leveraging existing data to predict novel functional materials, such as entropy stabilized ceramics, bulk metallic glasses, thermoelectrics, superalloys, and magnets, are surveyed.Comment: 25 pages, 7 figures, chapter in a boo

    Study of Confinement and Catalysis Effects of the Reaction of Methylation of Benzene by Methanol in H-Beta and H-ZSM-5 Zeolites by Topological Analysis of Electron Density

    Get PDF
    In this work we studied the host-guest interactions between confined molecules and zeolites and their relationship with the energies involved in the reaction of methylation of benzene by methanol in H-ZSM-5 and H-Beta zeolites employing density functional theory (DFT) methods and the quantum theory of atoms in molecules. Results show that the strength of the interactions related to adsorption and coadsorption processes is higher in the catalyst with the larger cavity; however, the confinement effects are higher in the smaller zeolite, explaining, from an electronic viewpoint, the reason why the stabilization energy is higher in H-ZSM-5 than in H-Beta. The confinement effects of the catalyst on the confined species for methanol adsorption, benzene coadsorption, and the formed intermediates dominate this stabilization. For the transition state (TS), the stability of the TS is achieved due to the stabilizing effect of the surrounding zeolite framework on the formed carbocationic species (CH3+) which is higher in H-ZSM-5 than in H-Beta. In both TSs the methyl cation is multicoordinated forming the following H2O···CH3+···CB concerted bonds. It is demonstrated that, through the electron density analysis, the criteria can be defined to discriminate between interactions related to the confinement effects and the reaction itself (adsorption, coadsorption, and bond-breaking and bond-forming processes) and, thus, to discriminate the relative contributions of the degree of confinement to the reaction energies for two zeolite catalysts with different topologies.Fil: Zalazar, Maria Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Paredes, Esteban Nadal. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Química. Laboratorio de Estructura Molecular y Propiedades; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; ArgentinaFil: Romero, Gonzalo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Química. Laboratorio de Estructura Molecular y Propiedades; ArgentinaFil: Cabral, Néstor Damián. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Química. Laboratorio de Estructura Molecular y Propiedades; ArgentinaFil: Peruchena, Nelida Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentin

    Improving Simulations of Aqueous Systems through Experimental Bias

    Get PDF
    In order to enhance the ab initio molecular dynamics treatment of aqueous systems, the Boltzmann inversion directed simulation method was developed that derives a corrective bias to the system pairwise potential using experimental data. The bias acts as an empirical correction that enables routine-level simulation of density functional theory water to achieve comparable liquid structure to experiment at ambient temperature without significantly increasing computational cost
    corecore