878 research outputs found

    An Automated System for the Assessment and Ranking of Domain Ontologies

    Get PDF
    As the number of intelligent software applications and the number of semantic websites continue to expand, ontologies are needed to formalize shared terms. Often it is necessary to either find a previously used ontology for a particular purpose, or to develop a new one to meet a specific need. Because of the challenge involved in creating a new ontology from scratch, the latter option is often preferable. The ability of a user to select an appropriate, high-quality domain ontology from a set of available options would be most useful in knowledge engineering and in developing intelligent applications. Being able to assess an ontology\u27s quality and suitability is also important when an ontology is developed from the beginning. These capabilities, however, require good quality assessment mechanisms as well as automated support when there are a large number of ontologies from which to make a selection. This thesis provides an in-depth analysis of the current research in domain ontology evaluation, including the development of a taxonomy to categorize the numerous directions the research has taken. Based on the lessons learned from the literature review, an approach to the automatic assessment of domain ontologies is selected and a suite of ontology quality assessment metrics grounded in semiotic theory is presented. The metrics are implemented in a Domain Ontology Rating System (DoORS), which is made available as an open source web application. An additional framework is developed that would incorporate this rating system as part of a larger system to find ontology libraries on the web, retrieve ontologies from them, and assess them to select the best ontology for a particular task. An empirical evaluation in four phases shows the usefulness of the work, including a more stringent evaluation of the metrics that assess how well an ontology fits its domain and how well an ontology is regarded within its community of users

    Design and Architecture of an Ontology-driven Dialogue System for HPV Vaccine Counseling

    Get PDF
    Speech and conversational technologies are increasingly being used by consumers, with the inevitability that one day they will be integrated in health care. Where this technology could be of service is in patient-provider communication, specifically for communicating the risks and benefits of vaccines. Human papillomavirus (HPV) vaccine, in particular, is a vaccine that inoculates individuals from certain HPV viruses responsible for adulthood cancers - cervical, head and neck cancers, etc. My research focuses on the architecture and development of speech-enabled conversational agent that relies on series of consumer-centric health ontologies and the technology that utilizes these ontologies. Ontologies are computable artifacts that encode and structure domain knowledge that can be utilized by machines to provide high level capabilities, such as reasoning and sharing information. I will focus the agent’s impact on the HPV vaccine domain to observe if users would respond favorably towards conversational agents and the possible impact of the agent on their beliefs of the HPV vaccine. The approach of this study involves a multi-tier structure. The first tier is the domain knowledge base, the second is the application interaction design tier, and the third is the feasibility assessment of the participants. The research in this study proposes the following questions: Can ontologies support the system architecture for a spoken conversational agent for HPV vaccine counseling? How would prospective users’ perception towards an agent and towards the HPV vaccine be impacted after using conversational agent for HPV vaccine education? The outcome of this study is a comprehensive assessment of a system architecture of a conversational agent for patient-centric HPV vaccine counseling. Each layer of the agent architecture is regulated through domain and application ontologies, and supported by the various ontology-driven software components that I developed to compose the agent architecture. Also discussed in this work, I present preliminary evidence of high usability of the agent and improvement of the users’ health beliefs toward the HPV vaccine. All in all, I introduce a comprehensive and feasible model for the design and development of an open-sourced, ontology-driven conversational agent for any health consumer domain, and corroborate the viability of a conversational agent as a health intervention tool

    Specification and implementation of mapping rule visualization and editing : MapVOWL and the RMLEditor

    Get PDF
    Visual tools are implemented to help users in defining how to generate Linked Data from raw data. This is possible thanks to mapping languages which enable detaching mapping rules from the implementation that executes them. However, no thorough research has been conducted so far on how to visualize such mapping rules, especially if they become large and require considering multiple heterogeneous raw data sources and transformed data values. In the past, we proposed the RMLEditor, a visual graph-based user interface, which allows users to easily create mapping rules for generating Linked Data from raw data. In this paper, we build on top of our existing work: we (i) specify a visual notation for graph visualizations used to represent mapping rules, (ii) introduce an approach for manipulating rules when large visualizations emerge, and (iii) propose an approach to uniformly visualize data fraction of raw data sources combined with an interactive interface for uniform data fraction transformations. We perform two additional comparative user studies. The first one compares the use of the visual notation to present mapping rules to the use of a mapping language directly, which reveals that the visual notation is preferred. The second one compares the use of the graph-based RMLEditor for creating mapping rules to the form-based RMLx Visual Editor, which reveals that graph-based visualizations are preferred to create mapping rules through the use of our proposed visual notation and uniform representation of heterogeneous data sources and data values. (C) 2018 Elsevier B.V. All rights reserved

    Expertise Profiling in Evolving Knowledgecuration Platforms

    Get PDF
    Expertise modeling has been the subject of extensiveresearch in two main disciplines: Information Retrieval (IR) andSocial Network Analysis (SNA). Both IR and SNA approachesbuild the expertise model through a document-centric approachproviding a macro-perspective on the knowledge emerging fromlarge corpus of static documents. With the emergence of the Webof Data there has been a significant shift from static to evolvingdocuments, through micro-contributions. Thus, the existingmacro-perspective is no longer sufficient to track the evolution ofboth knowledge and expertise. In this paper we present acomprehensive, domain-agnostic model for expertise profiling inthe context of dynamic, living documents and evolving knowledgebases. We showcase its application in the biomedical domain andanalyze its performance using two manually created datasets

    Architecture and usability of OntoKeeper, an ontology evaluation tool

    Full text link
    Abstract Background The existing community-wide bodies of biomedical ontologies are known to contain quality and content problems. Past research has revealed various errors related to their semantics and logical structure. Automated tools may help to ease the ontology construction, maintenance, assessment and quality assurance processes. However, there are relatively few tools that exist that can provide this support to knowledge engineers. Method We introduce OntoKeeper as a web-based tool that can automate quality scoring for ontology developers. We enlisted 5 experienced ontologists to test the tool and then administered the System Usability Scale to measure their assessment. Results In this paper, we present usability results from 5 ontologists revealing high system usability of OntoKeeper, and use-cases that demonstrate its capabilities in previous published biomedical ontology research. Conclusion To the best of our knowledge, OntoKeeper is the first of a few ontology evaluation tools that can help provide ontology evaluation functionality for knowledge engineers with good usability.https://deepblue.lib.umich.edu/bitstream/2027.42/152214/1/12911_2019_Article_859.pd

    A Life Cycle Approach to the Development and Validation of an Ontology of the U.S. Common Rule (45 C.F.R. § 46)

    Get PDF
    Requirements for the protection of human research subjects stem from directly from federal regulation by the Department of Health and Human Services in Title 45 of the Code of Federal Regulations (C.F.R.) part 46. 15 other federal agencies include subpart A of part 46 verbatim in their own body of regulation. Hence 45 C.F.R. part 46 subpart A has come to be called colloquially the ‘Common Rule.’ Overall motivation for this study began as a desire to facilitate the ethical sharing of biospecimen samples from large biospecimen collections by using ontologies. Previous work demonstrated that in general the informed consent process and subsequent decision making about data and specimen release still relies heavily on paper-based informed consent forms and processes. Consequently, well-validated computable models are needed to provide an enhanced foundation for data sharing. This dissertation describes the development and validation of a Common Rule Ontology (CRO), expressed in the OWL-2 Web Ontology Language, and is intended to provide a computable semantic knowledge model for assessing and representing components of the information artifacts of required as part of regulated research under 45 C.F.R. § 46. I examine if the alignment of this ontology with the Basic Formal Ontology and other ontologies from the Open Biomedical Ontology (OBO) Foundry provide a good fit for the regulatory aspects of the Common Rule Ontology. The dissertation also examines and proposes a new method for ongoing evaluation of ontology such as CRO across the ontology development lifecycle and suggest methods to achieve high quality, validated ontologies. While the CRO is not in itself intended to be a complete solution to the data and specimen sharing problems outlined above, it is intended to produce a well-validated computationally grounded framework upon which others can build. This model can be used in future work to build decision support systems to assist Institutional Review Boards (IRBs), regulatory personnel, honest brokers, tissue bank managers, and other individuals in the decision-making process involving biorepository specimen and data sharing

    An ontology to standardize research output of nutritional epidemiology : from paper-based standards to linked content

    Get PDF
    Background: The use of linked data in the Semantic Web is a promising approach to add value to nutrition research. An ontology, which defines the logical relationships between well-defined taxonomic terms, enables linking and harmonizing research output. To enable the description of domain-specific output in nutritional epidemiology, we propose the Ontology for Nutritional Epidemiology (ONE) according to authoritative guidance for nutritional epidemiology. Methods: Firstly, a scoping review was conducted to identify existing ontology terms for reuse in ONE. Secondly, existing data standards and reporting guidelines for nutritional epidemiology were converted into an ontology. The terms used in the standards were summarized and listed separately in a taxonomic hierarchy. Thirdly, the ontologies of the nutritional epidemiologic standards, reporting guidelines, and the core concepts were gathered in ONE. Three case studies were included to illustrate potential applications: (i) annotation of existing manuscripts and data, (ii) ontology-based inference, and (iii) estimation of reporting completeness in a sample of nine manuscripts. Results: Ontologies for food and nutrition (n = 37), disease and specific population (n = 100), data description (n = 21), research description (n = 35), and supplementary (meta) data description (n = 44) were reviewed and listed. ONE consists of 339 classes: 79 new classes to describe data and 24 new classes to describe the content of manuscripts. Conclusion: ONE is a resource to automate data integration, searching, and browsing, and can be used to assess reporting completeness in nutritional epidemiology

    Conceptual knowledge acquisition in biomedicine: A methodological review

    Get PDF
    AbstractThe use of conceptual knowledge collections or structures within the biomedical domain is pervasive, spanning a variety of applications including controlled terminologies, semantic networks, ontologies, and database schemas. A number of theoretical constructs and practical methods or techniques support the development and evaluation of conceptual knowledge collections. This review will provide an overview of the current state of knowledge concerning conceptual knowledge acquisition, drawing from multiple contributing academic disciplines such as biomedicine, computer science, cognitive science, education, linguistics, semiotics, and psychology. In addition, multiple taxonomic approaches to the description and selection of conceptual knowledge acquisition and evaluation techniques will be proposed in order to partially address the apparent fragmentation of the current literature concerning this domain
    • 

    corecore