7,290 research outputs found

    Sharing emotions and space - empathy as a basis for cooperative spatial interaction

    Get PDF
    Boukricha H, Nguyen N, Wachsmuth I. Sharing emotions and space - empathy as a basis for cooperative spatial interaction. In: Kopp S, Marsella S, Thorisson K, Vilhjalmsson HH, eds. Proceedings of the 11th International Conference on Intelligent Virtual Agents (IVA 2011). LNAI. Vol 6895. Berlin, Heidelberg: Springer; 2011: 350-362.Empathy is believed to play a major role as a basis for humans’ cooperative behavior. Recent research shows that humans empathize with each other to different degrees depending on several modulation factors including, among others, their social relationships, their mood, and the situational context. In human spatial interaction, partners share and sustain a space that is equally and exclusively reachable to them, the so-called interaction space. In a cooperative interaction scenario of relocating objects in interaction space, we introduce an approach for triggering and modulating a virtual humans cooperative spatial behavior by its degree of empathy with its interaction partner. That is, spatial distances like object distances as well as distances of arm and body movements while relocating objects in interaction space are modulated by the virtual human’s degree of empathy. In this scenario, the virtual human’s empathic emotion is generated as a hypothesis about the partner’s emotional state as related to the physical effort needed to perform a goal directed spatial behavior

    Theory of Robot Communication: II. Befriending a Robot over Time

    Full text link
    In building on theories of Computer-Mediated Communication (CMC), Human-Robot Interaction, and Media Psychology (i.e. Theory of Affective Bonding), the current paper proposes an explanation of how over time, people experience the mediated or simulated aspects of the interaction with a social robot. In two simultaneously running loops, a more reflective process is balanced with a more affective process. If human interference is detected behind the machine, Robot-Mediated Communication commences, which basically follows CMC assumptions; if human interference remains undetected, Human-Robot Communication comes into play, holding the robot for an autonomous social actor. The more emotionally aroused a robot user is, the more likely they develop an affective relationship with what actually is a machine. The main contribution of this paper is an integration of Computer-Mediated Communication, Human-Robot Communication, and Media Psychology, outlining a full-blown theory of robot communication connected to friendship formation, accounting for communicative features, modes of processing, as well as psychophysiology.Comment: Hoorn, J. F. (2018). Theory of robot communication: II. Befriending a robot over time. arXiv:cs, 2502572(v1), 1-2

    The perception of emotion in artificial agents

    Get PDF
    Given recent technological developments in robotics, artificial intelligence and virtual reality, it is perhaps unsurprising that the arrival of emotionally expressive and reactive artificial agents is imminent. However, if such agents are to become integrated into our social milieu, it is imperative to establish an understanding of whether and how humans perceive emotion in artificial agents. In this review, we incorporate recent findings from social robotics, virtual reality, psychology, and neuroscience to examine how people recognize and respond to emotions displayed by artificial agents. First, we review how people perceive emotions expressed by an artificial agent, such as facial and bodily expressions and vocal tone. Second, we evaluate the similarities and differences in the consequences of perceived emotions in artificial compared to human agents. Besides accurately recognizing the emotional state of an artificial agent, it is critical to understand how humans respond to those emotions. Does interacting with an angry robot induce the same responses in people as interacting with an angry person? Similarly, does watching a robot rejoice when it wins a game elicit similar feelings of elation in the human observer? Here we provide an overview of the current state of emotion expression and perception in social robotics, as well as a clear articulation of the challenges and guiding principles to be addressed as we move ever closer to truly emotional artificial agents

    Assistive technology design and development for acceptable robotics companions for ageing years

    Get PDF
    © 2013 Farshid Amirabdollahian et al., licensee Versita Sp. z o. o. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs license, which means that the text may be used for non-commercial purposes, provided credit is given to the author.A new stream of research and development responds to changes in life expectancy across the world. It includes technologies which enhance well-being of individuals, specifically for older people. The ACCOMPANY project focuses on home companion technologies and issues surrounding technology development for assistive purposes. The project responds to some overlooked aspects of technology design, divided into multiple areas such as empathic and social human-robot interaction, robot learning and memory visualisation, and monitoring persons’ activities at home. To bring these aspects together, a dedicated task is identified to ensure technological integration of these multiple approaches on an existing robotic platform, Care-O-Bot®3 in the context of a smart-home environment utilising a multitude of sensor arrays. Formative and summative evaluation cycles are then used to assess the emerging prototype towards identifying acceptable behaviours and roles for the robot, for example role as a butler or a trainer, while also comparing user requirements to achieved progress. In a novel approach, the project considers ethical concerns and by highlighting principles such as autonomy, independence, enablement, safety and privacy, it embarks on providing a discussion medium where user views on these principles and the existing tension between some of these principles, for example tension between privacy and autonomy over safety, can be captured and considered in design cycles and throughout project developmentsPeer reviewe

    Humans' Perception of a Robot Moving Using a Slow in and Slow Out Velocity Profile

    Get PDF
    © 2019 IEEE - All rights reservedHumans need to understand and trust the robots they are working with. We hypothesize that how a robot moves can impact people’s perception and their trust. We present a methodology for a study to explore people’s perception of a robot using the animation principle of slow in, slow out—to change the robot’s velocity profile versus a robot moving using a linear velocity profile. Study participants will interact with the robot within a home context to complete a task while the robot moves around the house. The participants’ perceptions of the robot will be recorded using the Godspeed Questionnaire. A pilot study shows that it is possible to notice the difference between the linear and the slow in, slow out velocity profiles, so the full experiment planned with participants will allow us to compare their perceptions based on the two observable behaviors.Final Accepted Versio
    corecore