34 research outputs found

    The electronic stethoscope

    Get PDF

    A Combined Model for Noise Reduction of Lung Sound Signals Based on Empirical Mode Decomposition and Artificial Neural Network

    Full text link
    Computer analysis of Lung Sound (LS) signals has been proposed in recent years as a tool to analyze the lungs' status but there have always been main challenges, including the contamination of LS with environmental noises, which come from different sources of unlike intensities. One of the common methods in noise reduction of LS signals is based on thresholding on Discrete Wavelet Transform (DWT) coefficients or Empirical Mode Decomposition (EMD) of the signal, however, in these methods, it is necessary to calculate the SNR value to determine the appropriate threshold for noise removal. To solve this problem, a combined model based on EMD and Artificial Neural Network (ANN) trained with different SNRs (0, 5, 10, 15, and 20dB) is proposed in this research. The model can denoise white and pink noises in the range of -2 to 20dB without thresholding or even estimating SNR, and at the same time, keep the main content of the LS signal well. The proposed method is also compared with the EMD-custom method, and the results obtained from the SNR, and fit criteria indicate the absolute superiority of the proposed method. For example, at SNR = 0dB, the combined method can improve the SNR by 9.41 and 8.23dB for white and pink noises, respectively, while the corresponding values are respectively 5.89 and 4.31dB for the EMD-Custom method

    An audio processing pipeline for acquiring diagnostic quality heart sounds via mobile phone

    Get PDF
    Recently, heart sound signals captured using mobile phones have been employed to develop data-driven heart disease detection systems. Such signals are generally captured in person by trained clinicians who can determine if the recorded heart sounds are of diagnosable quality. However, mobile phones have the potential to support heart health diagnostics, even where access to trained medical professionals is limited. To adopt mobile phones as self-diagnostic tools for the masses, we would need to have a mechanism to automatically establish that heart sounds recorded by non-expert users in uncontrolled conditions have the required quality for diagnostic purposes. This paper proposes a quality assessment and enhancement pipeline for heart sounds captured using mobile phones. The pipeline analyzes a heart sound and determines if it has the required quality for diagnostic tasks. Also, in cases where the quality of the captured signal is below the required threshold, the pipeline can improve the quality by applying quality enhancement algorithms. Using this pipeline, we can also provide feedback to users regarding the cause of low-quality signal capture and guide them towards a successful one. We conducted a survey of a group of thirteen clinicians with auscultation skills and experience. The results of this survey were used to inform and validate the proposed quality assessment and enhancement pipeline. We observed a high level of agreement between the survey results and fundamental design decisions within the proposed pipeline. Also, the results indicate that the proposed pipeline can reduce our dependency on trained clinicians for capture of diagnosable heart sounds

    NRC-Net: Automated noise robust cardio net for detecting valvular cardiac diseases using optimum transformation method with heart sound signals

    Full text link
    Cardiovascular diseases (CVDs) can be effectively treated when detected early, reducing mortality rates significantly. Traditionally, phonocardiogram (PCG) signals have been utilized for detecting cardiovascular disease due to their cost-effectiveness and simplicity. Nevertheless, various environmental and physiological noises frequently affect the PCG signals, compromising their essential distinctive characteristics. The prevalence of this issue in overcrowded and resource-constrained hospitals can compromise the accuracy of medical diagnoses. Therefore, this study aims to discover the optimal transformation method for detecting CVDs using noisy heart sound signals and propose a noise robust network to improve the CVDs classification performance.For the identification of the optimal transformation method for noisy heart sound data mel-frequency cepstral coefficients (MFCCs), short-time Fourier transform (STFT), constant-Q nonstationary Gabor transform (CQT) and continuous wavelet transform (CWT) has been used with VGG16. Furthermore, we propose a novel convolutional recurrent neural network (CRNN) architecture called noise robust cardio net (NRC-Net), which is a lightweight model to classify mitral regurgitation, aortic stenosis, mitral stenosis, mitral valve prolapse, and normal heart sounds using PCG signals contaminated with respiratory and random noises. An attention block is included to extract important temporal and spatial features from the noisy corrupted heart sound.The results of this study indicate that,CWT is the optimal transformation method for noisy heart sound signals. When evaluated on the GitHub heart sound dataset, CWT demonstrates an accuracy of 95.69% for VGG16, which is 1.95% better than the second-best CQT transformation technique. Moreover, our proposed NRC-Net with CWT obtained an accuracy of 97.4%, which is 1.71% higher than the VGG16

    A Comprehensive Survey on Heart Sound Analysis in the Deep Learning Era

    Full text link
    Heart sound auscultation has been demonstrated to be beneficial in clinical usage for early screening of cardiovascular diseases. Due to the high requirement of well-trained professionals for auscultation, automatic auscultation benefiting from signal processing and machine learning can help auxiliary diagnosis and reduce the burdens of training professional clinicians. Nevertheless, classic machine learning is limited to performance improvement in the era of big data. Deep learning has achieved better performance than classic machine learning in many research fields, as it employs more complex model architectures with stronger capability of extracting effective representations. Deep learning has been successfully applied to heart sound analysis in the past years. As most review works about heart sound analysis were given before 2017, the present survey is the first to work on a comprehensive overview to summarise papers on heart sound analysis with deep learning in the past six years 2017--2022. We introduce both classic machine learning and deep learning for comparison, and further offer insights about the advances and future research directions in deep learning for heart sound analysis

    Generalized recursive algorithm for fetal electrocardiogram isolation from non-invasive maternal electrocardiogram

    Get PDF
    Non-invasive maternal electrocardiogram recording is the least unpleasant method to record a weak fetal electrocardiogram signal. The importance of this recording lies in the fact that it reveals crucial information about the fetal health state, especially during the last four weeks of pregnancy. This paper will be concerned with a new adaptive algorithm, namely the generalized recursive algorithm, to isolate and get the fetal electrocardiogram from the abdominal maternal electrocardiogram. This is achieved using a non-invasive method for bi-channel maternal electrocardiogram recordings i.e., with the thoracic maternal electrocardiogram as a reference signal, and the abdominal maternal electrocardiogram as a primary signal. Prior to this procedure, the discrete wavelet transform (DWT) method is applied to the abdominal electrocardiogram signal to clean it from any additive noise and the baseline wandering that is generally present on the raw recordings. The proposed new adaptive filter is shown to deliver improved characteristics through simulations. These simulations were performed on both synthetic and actual signals. This work was compared with the normalized least mean square algorithm

    Exploring the Impact of Noise and Degradations on Heart Sound Classification Models

    Get PDF
    The development of data-driven heart sound classification models has been an active area of research in recent years. To develop such data-driven models in the first place, heart sound signals need to be captured using a signal acquisition device. However, it is almost impossible to capture noise-free heart sound signals due to the presence of internal and external noises in most situations. Such noises and degradations in heart sound signals can potentially reduce the accuracy of data-driven classification models. Although different techniques have been proposed in the literature to address the noise issue, how and to what extent different noise and degradations in heart sound signals impact the accuracy of data-driven classification models remains unexplored. To answer this question, we produced a synthetic heart sound dataset including normal and abnormal heart sounds contaminated with a variety of noise and degradations. We used this dataset to investigate the impact of noise and degradation in heart sound recordings on the performance of different classification models. The results show different noises and degradations affect the performance of heart sound classification models to a different extent; some are more problematic for classification models, and others are less destructive. Comparing the findings of this study with the results of a survey we previously carried out with a group of clinicians shows noise and degradations that are more detrimental to classification models are also more disruptive to accurate auscultation. The findings of this study can be leveraged to develop targeted heart sound quality enhancement approaches — which adapt the type and aggressiveness of quality enhancement based on the characteristics of noise and degradation in heart sound signals

    Heart sounds:From animal to patient and Mhealth

    Get PDF

    Signal Processing Using Non-invasive Physiological Sensors

    Get PDF
    Non-invasive biomedical sensors for monitoring physiological parameters from the human body for potential future therapies and healthcare solutions. Today, a critical factor in providing a cost-effective healthcare system is improving patients' quality of life and mobility, which can be achieved by developing non-invasive sensor systems, which can then be deployed in point of care, used at home or integrated into wearable devices for long-term data collection. Another factor that plays an integral part in a cost-effective healthcare system is the signal processing of the data recorded with non-invasive biomedical sensors. In this book, we aimed to attract researchers who are interested in the application of signal processing methods to different biomedical signals, such as an electroencephalogram (EEG), electromyogram (EMG), functional near-infrared spectroscopy (fNIRS), electrocardiogram (ECG), galvanic skin response, pulse oximetry, photoplethysmogram (PPG), etc. We encouraged new signal processing methods or the use of existing signal processing methods for its novel application in physiological signals to help healthcare providers make better decisions

    ELECTRO-MECHANICAL DATA FUSION FOR HEART HEALTH MONITORING

    Get PDF
    Heart disease is a major public health problem and one of the leading causes of death worldwide. Therefore, cardiac monitoring is of great importance for the early detection and prevention of adverse conditions. Recently, there has been extensive research interest in long-term, continuous, and non-invasive cardiac monitoring using wearable technology. Here we introduce a wearable device for monitoring heart health. This prototype consists of three sensors to monitor electrocardiogram (ECG), phonocardiogram (PCG), and seismocardiogram (SCG) signals, integrated with a microcontroller module with Bluetooth wireless connectivity. We also created a custom printed circuit board (PCB) to integrate all the sensors into a compact design. Then, flexible housing for the electronic components was 3D printed using thermoplastic polyurethane (TPU). In addition, we developed peak detection algorithms and filtering programs to analyze the recorded cardiac signals. Our preliminary results show that the device can record all three signals in real-time. Initial results for signal interpretation come from a recurrent neural network (RNN) based machine learning algorithm, Long Short-Term Memory (LSTM), which is used to monitor and identify key features in the ECG data. The next phase of our research will include cross-examination of all three sensor signals, development of machine learning algorithms for PCG and SCG signals, and continuous improvement of the wearable device
    corecore