9,608 research outputs found

    Analysis and simulation of nutrient retention and management for a lowland river-lake system

    No full text
    International audienceIn the context of the European Water Framework Directive, we studied the possible impact of reduced emissions on phosphorus and nitrogen concentrations in a lowland river-lake system (Havel River, Germany). As a prerequisite, we quantified the retention of nutrients in the river from mass balances and deduced its seasonal variation. We detected that about 30% of the total nitrogen input is retained within the surveyed river section. In contrast, phosphorus release from sediments was shown to cause a considerable increase in present P concentrations. Average net phosphorus release rates of about 20 mg P m?2 d?1 in late summer were estimated for the Havel Lakes. Based on the observed patterns of N retention and P release we parametrized a newly developed water quality simulation program (TRAM), which allows alternative model approaches of different complexity to be implemented and tested. To account for the future trend of internal P loading, the phosphorus excess in lake sediments was estimated from core samples and included in the model as a state variable. For analyzing scenarios of reduced nutrient emissisions, the water quality simulation program was linked to mesoscale hydrological catchment models for the first time. From scenario simulations we conclude that internal P loading is likely to counteract efforts of emission control for decades. Even by significant reductions in external P loads, a persistent phosphorus limitation of primary production can hardly be established in the analyzed time frame of 13 years. Though in the short run a continued reduction in nitrogen loads appears to be the more promising approach of eutrophication management, we recommend enhanced efforts to diminish both N and P emissions

    Model-based analysis of nutrient retention and management for a lowland river

    No full text
    International audienceIn the context of the European Water Framework Directive options for improving the water quality of the lowland river Havel (Germany) were assessed. The lower section of this river is actually a polytrophic river-lake system suffering from high external nutrient loading and exhibiting significant in-river turnover. In order to gain a better understanding of present conditions and to allow integrated scenarios of nutrient management to be evaluated the catchment models SWIM and ArcEGMO-Urban were coupled with a simple, newly developed nutrient TRAnsport Model (TraM). Using the TraM model, the retention of nitrogen and phosphorus in a 55 km reach of the Lower Havel River was quantified and its temporal variation was analyzed. It was examined that about 30% of the external nitrogen input to the Lower Havel is retained within the surveyed river section. A comparison of simulation results generated with and without consideration of phosphorus retention/release revealed that summer TP concentrations are currently increased by 100?200% due to internal loading. Net phosphorus release rates of about 20 mg P m?2 d-1 in late summer were estimated for the Havel lakes. Scenario simulations with lowered external nutrient inputs revealed that persistent phosphorus limitation of primary production cannot be established within the next decade. It was shown that a further reduction in nitrogen concentrations requires emissions to be reduced in all inflows. Though the TraM model needs further extension it proved to be appropriate for conducting integrated catchment and river modeling

    The potential of RIVPACS for predicting the effects of environmental change

    Get PDF
    RIVPACS has been used successfully for biological assessment of river water quality but its potential in forecasting the effects of environmental change has not been investigated. This study has shown that it is possible to simulate faunal changes in response to environmental disturbance, provided that the disturbance directly involves the environmental variables used in RIVPACS predictions. These variables relate to channel shape, discharge and substratum. Many impacts, particularly those associated with pollution, will not affect these variables and therefore RIVPACS cannot simulate the effects of pollution. RIVPACS was sensitive only to major changes in substratum. It was concluded that, because of the static nature of RIVPACS, it cannot respond to the dynamic effects and processes associated with environmental disturbance. Thus RIVPACS, while showing direction of change and indicating sensitive taxa, cannot be used to predict or forecast the effects of environmental impacts

    Estimating Future Flood Frequency and Magnitude in Basins Affected by Glacier Wastage

    Get PDF
    INE/AUTC 15.0

    Integrating fish resources to agro-ecosystem analyses

    Get PDF
    In October 2005, a consortium of partners led by the International Water Management Institute (IWMI) proposed a project aimed at integrating fish resources management in agricultural management in the Tonle Sap area. This 2-years project assistance was accepted for funding by the Challenge Program on Water and Food and started in January 2008. The overall goal of this project is to improve allocation and use of water in combined farming and fishing systems in order to enhance food security of rural communities and water productivity. The general objectives of the Fisheries component are: 1) to contribute to the review of existing fisheries and aquaculture information, assessment and data collection systems and existing databases from a fisheries perspective 2) to determine key questions that could be asked at the commune level that would enable the identification of fisheries issues for different agroecosystem zones. These would include both threats and potential threats to fisheries based on key ecological variables and opportunities that fisheries and aquaculture could represent in local livelihoods.Research, Lake fisheries, Agropisciculture, Ecosystems, Analysis, Cambodia, Tonle Sap L.,

    Assessment of the spatial and temporal variations of water quality for agricultural lands with crop rotation in China by using a HYPE model

    Get PDF
    Many water quality models have been successfully used worldwide to predict nutrient losses from anthropogenically impacted catchments, but hydrological and nutrient simulations with little data are difficult considering the transfer of model parameters and complication of model calibration and validation. This study aims (i) to assess the performance capabilities of a new and relatively more advantageous model-hydrological predictions for the environment (HYPE) to simulate stream flow and nutrient load in ungauged agricultural areas by using a multi-site and multi-objective parameter calibration method and (ii) to investigate the temporal and spatial variations of total nitrogen (TN) and total phosphorous (TP) concentrations and loads with crop rotation using the model for the first time. A parameter estimation tool (PEST) was used to calibrate parameters, which shows that the parameters related to the effective soil porosity were most sensitive to hydrological modeling. N balance was largely controlled by soil denitrification processes, whereas P balance was influenced by the sedimentation rate and production/decay of P in rivers and lakes. The model reproduced the temporal and spatial variations of discharge and TN/TP relatively well in both calibration (2006–2008) and validation (2009–2010) periods. The lowest NSEs (Nash-Suttclife Efficiency) of discharge, daily TN load, and daily TP load were 0.74, 0.51, and 0.54, respectively. The seasonal variations of daily TN concentrations in the entire simulation period were insufficient, indicated that crop rotation changed the timing and amount of N output. Monthly TN and TP simulation yields revealed that nutrient outputs were abundant in summer in terms of the corresponding discharge. The area-weighted TN and TP load annual yields in five years showed that nutrient loads were extremely high along Hong and Ru rivers, especially in agricultural lands

    NCR-days 2008 : 10 years NCR: November 20-21

    Get PDF
    De verschillende subthema’s van de NCR-dagen 2008, (i) Stroomgebied en Overstromingsrisico management (ii) Hydrologie en (iii) Geomorfodynamica en Morfologie, dekken een groot gedeelte van het hedendaagse onderzoek dat in Nederland op rivierkundig gebied wordt uitgevoerd

    Rain event properties at the source of the Blue Nile River

    Get PDF
    In the present study, spatial and temporal patterns of rain event properties are analysed. These event properties are rain event depth, event duration, mean event rain rate, peak rain rate and the time span between two consecutive rain events which is referred to as inter-event time (IET). In addition, we assessed how rain event properties change when the period over which rainfall data is aggregated changes from 1 to 6 min and when the minimum inter-event time (MIT) changes from 30 min to 8 h. Rainfall data is obtained from a field campaign in two wet seasons of June–August (JJA) of 2007 and 2008 in Gilgel Abbay watershed that is situated at the source basin of the Upper Blue Nile River in Ethiopia. The rainfall data was automatically recorded at eight stations. The results revealed that rain event depth is more related to peak rain rate than to event duration. At the start and towards the end of the wet season, the rain events have larger depth with longer duration and longer IET than those in mid-season. Event rain rate and IET are strongly related to terrain elevation. Sekela which is on a mountain area has the shortest IET while Bahir Dar which is at the south shore of Lake Tana has the longest IET. The period over which rainfall data is aggregated significantly affected the values of rain event properties that are estimated using relatively small value (30 min) of MIT but its effect diminished when the MIT is increased to 8 h. It is shown that increasing the value of MIT has the largest effect on rain event properties of mountain stations that are characterised by high rainfall intermittency

    A Program for the Collection, Storage, and Analysis of Baseline Environmental Data for Cook Inlet, Alaska

    Get PDF
    The scope of this report is to provide a general, yet comprehensive, description of the Cook Inlet System which will serve as a basis for understanding the interrelated natural and man-made factors governing its future; to present a program of field research studies for the estuarine environment that will describe the existing state of the Inlet with respect to the water quality and biota; to provide a framework whereby the program of studies can be evaluated and redirected in light of the preliminary results; and, to provide a method of storing and analyzing the data from the investigations so that it can be made available to interested parties in the most efficient manner possible.This report was prepared by the Institute of Water Resources of the University of Alaska for the Alaska Water Laboratory, Federal Water Pollution Control Administration under Contract No. 14-12-449
    corecore