570 research outputs found

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    ์ ๋ถ„ ๋ฐ ๋งค๊ฐœ๋ณ€์ˆ˜ ๊ธฐ๋ฒ• ์œตํ•ฉ์„ ์ด์šฉํ•œ ์Šค๋งˆํŠธํฐ ๋‹ค์ค‘ ๋™์ž‘์—์„œ ๋ณดํ–‰ ํ•ญ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2020. 8. ๋ฐ•์ฐฌ๊ตญ.In this dissertation, an IA-PA fusion-based PDR (Pedestrian Dead Reckoning) using low-cost inertial sensors is proposed to improve the indoor position estimation. Specifically, an IA (Integration Approach)-based PDR algorithm combined with measurements from PA (Parametric Approach) is constructed so that the algorithm is operated even in various poses that occur when a pedestrian moves with a smartphone indoors. In addition, I propose an algorithm that estimates the device attitude robustly in a disturbing situation by an ellipsoidal method. In addition, by using the machine learning-based pose recognition, it is possible to improve the position estimation performance by varying the measurement update according to the poses. First, I propose an adaptive attitude estimation based on ellipsoid technique to accurately estimate the direction of movement of a smartphone device. The AHRS (Attitude and Heading Reference System) uses an accelerometer and a magnetometer as measurements to calculate the attitude based on the gyro and to compensate for drift caused by gyro sensor errors. In general, the attitude estimation performance is poor in acceleration and geomagnetic disturbance situations, but in order to effectively improve the estimation performance, this dissertation proposes an ellipsoid-based adaptive attitude estimation technique. When a measurement disturbance comes in, it is possible to update the measurement more accurately than the adaptive estimation technique without considering the direction by adjusting the measurement covariance with the ellipsoid method considering the direction of the disturbance. In particular, when the disturbance only comes in one axis, the proposed algorithm can use the measurement partly by updating the other two axes considering the direction. The proposed algorithm shows its effectiveness in attitude estimation under disturbances through the rate table and motion capture equipment. Next, I propose a PDR algorithm that integrates IA and PA that can be operated in various poses. When moving indoors using a smartphone, there are many degrees of freedom, so various poses such as making a phone call, texting, and putting a pants pocket are possible. In the existing smartphone-based positioning algorithms, the position is estimated based on the PA, which can be used only when the pedestrian's walking direction and the device's direction coincide, and if it does not, the position error due to the mismatch in angle is large. In order to solve this problem, this dissertation proposes an algorithm that constructs state variables based on the IA and uses the position vector from the PA as a measurement. If the walking direction and the device heading do not match based on the pose recognized through machine learning technique, the position is updated in consideration of the direction calculated using PCA (Principal Component Analysis) and the step length obtained through the PA. It can be operated robustly even in various poses that occur. Through experiments considering various operating conditions and paths, it is confirmed that the proposed method stably estimates the position and improves performance even in various indoor environments.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ €๊ฐ€ํ˜• ๊ด€์„ฑ์„ผ์„œ๋ฅผ ์ด์šฉํ•œ ๋ณดํ–‰ํ•ญ๋ฒ•์‹œ์Šคํ…œ (PDR: Pedestrian Dead Reckoning)์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ ๋ณดํ–‰์ž๊ฐ€ ์‹ค๋‚ด์—์„œ ์Šค๋งˆํŠธํฐ์„ ๋“ค๊ณ  ์ด๋™ํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๋‹ค์–‘ํ•œ ๋™์ž‘ ์ƒํ™ฉ์—์„œ๋„ ์šด์šฉ๋  ์ˆ˜ ์žˆ๋„๋ก, ๋งค๊ฐœ๋ณ€์ˆ˜ ๊ธฐ๋ฐ˜ ์ธก์ •์น˜๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์ ๋ถ„ ๊ธฐ๋ฐ˜์˜ ๋ณดํ–‰์ž ํ•ญ๋ฒ• ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ตฌ์„ฑํ•œ๋‹ค. ๋˜ํ•œ ํƒ€์›์ฒด ๊ธฐ๋ฐ˜ ์ž์„ธ ์ถ”์ • ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ตฌ์„ฑํ•˜์—ฌ ์™ธ๋ž€ ์ƒํ™ฉ์—์„œ๋„ ๊ฐ•์ธํ•˜๊ฒŒ ์ž์„ธ๋ฅผ ์ถ”์ •ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ ๊ธฐ๊ณ„ํ•™์Šต ๊ธฐ๋ฐ˜์˜ ๋™์ž‘ ์ธ์‹ ์ •๋ณด๋ฅผ ์ด์šฉ, ๋™์ž‘์— ๋”ฐ๋ฅธ ์ธก์ •์น˜ ์—…๋ฐ์ดํŠธ๋ฅผ ๋‹ฌ๋ฆฌํ•จ์œผ๋กœ์จ ์œ„์น˜ ์ถ”์ • ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค. ๋จผ์ € ์Šค๋งˆํŠธํฐ ๊ธฐ๊ธฐ์˜ ์ด๋™ ๋ฐฉํ–ฅ์„ ์ •ํ™•ํ•˜๊ฒŒ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•ด ํƒ€์›์ฒด ๊ธฐ๋ฒ• ๊ธฐ๋ฐ˜ ์ ์‘ ์ž์„ธ ์ถ”์ •์„ ์ œ์•ˆํ•œ๋‹ค. ์ž์„ธ ์ถ”์ • ๊ธฐ๋ฒ• (AHRS: Attitude and Heading Reference System)์€ ์ž์ด๋กœ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ž์„ธ๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ  ์ž์ด๋กœ ์„ผ์„œ์˜ค์ฐจ์— ์˜ํ•ด ๋ฐœ์ƒํ•˜๋Š” ๋“œ๋ฆฌํ”„ํŠธ๋ฅผ ๋ณด์ •ํ•˜๊ธฐ ์œ„ํ•ด ์ธก์ •์น˜๋กœ ๊ฐ€์†๋„๊ณ„์™€ ์ง€์ž๊ณ„๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ๊ฐ€์† ๋ฐ ์ง€์ž๊ณ„ ์™ธ๋ž€ ์ƒํ™ฉ์—์„œ๋Š” ์ž์„ธ ์ถ”์ • ์„ฑ๋Šฅ์ด ๋–จ์–ด์ง€๋Š”๋ฐ, ์ถ”์ • ์„ฑ๋Šฅ์„ ํšจ๊ณผ์ ์œผ๋กœ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํƒ€์›์ฒด ๊ธฐ๋ฐ˜ ์ ์‘ ์ž์„ธ ์ถ”์ • ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ธก์ •์น˜ ์™ธ๋ž€์ด ๋“ค์–ด์˜ค๋Š” ๊ฒฝ์šฐ, ์™ธ๋ž€์˜ ๋ฐฉํ–ฅ์„ ๊ณ ๋ คํ•˜์—ฌ ํƒ€์›์ฒด ๊ธฐ๋ฒ•์œผ๋กœ ์ธก์ •์น˜ ๊ณต๋ถ„์‚ฐ์„ ์กฐ์ •ํ•ด์คŒ์œผ๋กœ์จ ๋ฐฉํ–ฅ์„ ๊ณ ๋ คํ•˜์ง€ ์•Š์€ ์ ์‘ ์ถ”์ • ๊ธฐ๋ฒ•๋ณด๋‹ค ์ •ํ™•ํ•˜๊ฒŒ ์ธก์ •์น˜ ์—…๋ฐ์ดํŠธ๋ฅผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ ์™ธ๋ž€์ด ํ•œ ์ถ•์œผ๋กœ๋งŒ ๋“ค์–ด์˜ค๋Š” ๊ฒฝ์šฐ, ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋ฐฉํ–ฅ์„ ๊ณ ๋ คํ•ด ๋‚˜๋จธ์ง€ ๋‘ ์ถ•์— ๋Œ€ํ•ด์„œ๋Š” ์—…๋ฐ์ดํŠธ ํ•ด์คŒ์œผ๋กœ์จ ์ธก์ •์น˜๋ฅผ ๋ถ€๋ถ„์ ์œผ๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ ˆ์ดํŠธ ํ…Œ์ด๋ธ”, ๋ชจ์…˜ ์บก์ณ ์žฅ๋น„๋ฅผ ํ†ตํ•ด ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ž์„ธ ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ ๋‹ค์–‘ํ•œ ๋™์ž‘์—์„œ๋„ ์šด์šฉ ๊ฐ€๋Šฅํ•œ ์ ๋ถ„ ๋ฐ ๋งค๊ฐœ๋ณ€์ˆ˜ ๊ธฐ๋ฒ•์„ ์œตํ•ฉํ•˜๋Š” ๋ณดํ–‰ํ•ญ๋ฒ• ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์Šค๋งˆํŠธํฐ์„ ์ด์šฉํ•ด ์‹ค๋‚ด๋ฅผ ์ด๋™ํ•  ๋•Œ์—๋Š” ์ž์œ ๋„๊ฐ€ ํฌ๊ธฐ ๋•Œ๋ฌธ์— ์ „ํ™” ๊ฑธ๊ธฐ, ๋ฌธ์ž, ๋ฐ”์ง€ ์ฃผ๋จธ๋‹ˆ ๋„ฃ๊ธฐ ๋“ฑ ๋‹ค์–‘ํ•œ ๋™์ž‘์ด ๋ฐœ์ƒ ๊ฐ€๋Šฅํ•˜๋‹ค. ๊ธฐ์กด์˜ ์Šค๋งˆํŠธํฐ ๊ธฐ๋ฐ˜ ๋ณดํ–‰ ํ•ญ๋ฒ•์—์„œ๋Š” ๋งค๊ฐœ๋ณ€์ˆ˜ ๊ธฐ๋ฒ•์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์œ„์น˜๋ฅผ ์ถ”์ •ํ•˜๋Š”๋ฐ, ์ด๋Š” ๋ณดํ–‰์ž์˜ ์ง„ํ–‰ ๋ฐฉํ–ฅ๊ณผ ๊ธฐ๊ธฐ์˜ ๋ฐฉํ–ฅ์ด ์ผ์น˜ํ•˜๋Š” ๊ฒฝ์šฐ์—๋งŒ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•˜๋ฉฐ ์ผ์น˜ํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ ์ž์„ธ ์˜ค์ฐจ๋กœ ์ธํ•œ ์œ„์น˜ ์˜ค์ฐจ๊ฐ€ ํฌ๊ฒŒ ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ ๋ถ„ ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ•์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ƒํƒœ๋ณ€์ˆ˜๋ฅผ ๊ตฌ์„ฑํ•˜๊ณ  ๋งค๊ฐœ๋ณ€์ˆ˜ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ๋‚˜์˜ค๋Š” ์œ„์น˜ ๋ฒกํ„ฐ๋ฅผ ์ธก์ •์น˜๋กœ ์‚ฌ์šฉํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๋งŒ์•ฝ ๊ธฐ๊ณ„ํ•™์Šต์„ ํ†ตํ•ด ์ธ์‹ํ•œ ๋™์ž‘์„ ๋ฐ”ํƒ•์œผ๋กœ ์ง„ํ–‰ ๋ฐฉํ–ฅ๊ณผ ๊ธฐ๊ธฐ ๋ฐฉํ–ฅ์ด ์ผ์น˜ํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ, ์ฃผ์„ฑ๋ถ„ ๋ถ„์„์„ ํ†ตํ•ด ๊ณ„์‚ฐํ•œ ์ง„ํ–‰๋ฐฉํ–ฅ์„ ์ด์šฉํ•ด ์ง„ํ–‰ ๋ฐฉํ–ฅ์„, ๋งค๊ฐœ๋ณ€์ˆ˜ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ์–ป์€ ๋ณดํญ์œผ๋กœ ๊ฑฐ๋ฆฌ๋ฅผ ์—…๋ฐ์ดํŠธํ•ด ์คŒ์œผ๋กœ์จ ๋ณดํ–‰ ์ค‘ ๋ฐœ์ƒํ•˜๋Š” ์—ฌ๋Ÿฌ ๋™์ž‘์—์„œ๋„ ๊ฐ•์ธํ•˜๊ฒŒ ์šด์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‹ค์–‘ํ•œ ๋™์ž‘ ์ƒํ™ฉ ๋ฐ ๊ฒฝ๋กœ๋ฅผ ๊ณ ๋ คํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ์œ„์—์„œ ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์ด ๋‹ค์–‘ํ•œ ์‹ค๋‚ด ํ™˜๊ฒฝ์—์„œ๋„ ์•ˆ์ •์ ์œผ๋กœ ์œ„์น˜๋ฅผ ์ถ”์ •ํ•˜๊ณ  ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋จ์„ ํ™•์ธํ•˜์˜€๋‹ค.Chapter 1 Introduction 1 1.1 Motivation and Background 1 1.2 Objectives and Contribution 5 1.3 Organization of the Dissertation 6 Chapter 2 Pedestrian Dead Reckoning System 8 2.1 Overview of Pedestrian Dead Reckoning 8 2.2 Parametric Approach 9 2.2.1 Step detection algorithm 11 2.2.2 Step length estimation algorithm 13 2.2.3 Heading estimation 14 2.3 Integration Approach 15 2.3.1 Extended Kalman filter 16 2.3.2 INS-EKF-ZUPT 19 2.4 Activity Recognition using Machine Learning 21 2.4.1 Challenges in HAR 21 2.4.2 Activity recognition chain 22 Chapter 3 Attitude Estimation in Smartphone 26 3.1 Adaptive Attitude Estimation in Smartphone 26 3.1.1 Indirect Kalman filter-based attitude estimation 26 3.1.2 Conventional attitude estimation algorithms 29 3.1.3 Adaptive attitude estimation using ellipsoidal methods 30 3.2 Experimental Results 36 3.2.1 Simulation 36 3.2.2 Rate table experiment 44 3.2.3 Handheld rotation experiment 46 3.2.4 Magnetic disturbance experiment 49 3.3 Summary 53 Chapter 4 Pedestrian Dead Reckoning in Multiple Poses of a Smartphone 54 4.1 System Overview 55 4.2 Machine Learning-based Pose Classification 56 4.2.1 Training dataset 57 4.2.2 Feature extraction and selection 58 4.2.3 Pose classification result using supervised learning in PDR 62 4.3 Fusion of the Integration and Parametric Approaches in PDR 65 4.3.1 System model 67 4.3.2 Measurement model 67 4.3.3 Mode selection 74 4.3.4 Observability analysis 76 4.4 Experimental Results 82 4.4.1 AHRS results 82 4.4.2 PCA results 84 4.4.3 IA-PA results 88 4.5 Summary 100 Chapter 5 Conclusions 103 5.1 Summary of the Contributions 103 5.2 Future Works 105 ๊ตญ๋ฌธ์ดˆ๋ก 125 Acknowledgements 127Docto

    Enhanced Indoor Localization System based on Inertial Navigation

    Get PDF
    An algorithm for indoor localization of pedestrians using an improved Inertial Navigation system is presented for smartphone based applications. When using standard inertial navigation algorithm, errors in sensors due to random noise and bias result in a large drift from the actual location with time. Novel corrections are introduced for the basic system to increase the accuracy by counteracting the accumulation of this drift error, which are applied using a Kalman filter framework. A generalized velocity model was applied to correct the walking velocity and the accuracy of the algorithm was investigated with three different velocity models which were derived from the actual velocity measured at the hip of walking person. Spatial constraints based on knowledge of indoor environment were applied to correct the walking direction. Analysis of absolute heading corrections from magnetic direction was performed . Results show that the proposed method with Gaussian velocity model achieves competitive accuracy with a 30\% less variance over Step and Heading approach proving the accuracy and robustness of proposed method. We also investigated the frequency of applying corrections and found that a 4\% corrections per step is required for improved accuracy. The proposed method is applicable in indoor localization and tracking applications based on smart phone where traditional approaches such as GNSS suffers from many issues

    Finding Your Way Back: Comparing Path Odometry Algorithms for Assisted Return.

    Get PDF
    We present a comparative analysis of inertial-based odometry algorithms for the purpose of assisted return. An assisted return system facilitates backtracking of a path previously taken, and can be particularly useful for blind pedestrians. We present a new algorithm for path matching, and test it in simulated assisted return tasks with data from WeAllWalk, the only existing data set with inertial data recorded from blind walkers. We consider two odometry systems, one based on deep learning (RoNIN), and the second based on robust turn detection and step counting. Our results show that the best path matching results are obtained using the turns/steps odometry system

    Toward a unified PNT, Part 1: Complexity and context: Key challenges of multisensor positioning

    Get PDF
    The next generation of navigation and positioning systems must provide greater accuracy and reliability in a range of challenging environments to meet the needs of a variety of mission-critical applications. No single navigation technology is robust enough to meet these requirements on its own, so a multisensor solution is required. Known environmental features, such as signs, buildings, terrain height variation, and magnetic anomalies, may or may not be available for positioning. The system could be stationary, carried by a pedestrian, or on any type of land, sea, or air vehicle. Furthermore, for many applications, the environment and host behavior are subject to change. A multi-sensor solution is thus required. The expert knowledge problem is compounded by the fact that different modules in an integrated navigation system are often supplied by different organizations, who may be reluctant to share necessary design information if this is considered to be intellectual property that must be protected

    Map++: A Crowd-sensing System for Automatic Map Semantics Identification

    Full text link
    Digital maps have become a part of our daily life with a number of commercial and free map services. These services have still a huge potential for enhancement with rich semantic information to support a large class of mapping applications. In this paper, we present Map++, a system that leverages standard cell-phone sensors in a crowdsensing approach to automatically enrich digital maps with different road semantics like tunnels, bumps, bridges, footbridges, crosswalks, road capacity, among others. Our analysis shows that cell-phones sensors with humans in vehicles or walking get affected by the different road features, which can be mined to extend the features of both free and commercial mapping services. We present the design and implementation of Map++ and evaluate it in a large city. Our evaluation shows that we can detect the different semantics accurately with at most 3% false positive rate and 6% false negative rate for both vehicle and pedestrian-based features. Moreover, we show that Map++ has a small energy footprint on the cell-phones, highlighting its promise as a ubiquitous digital maps enriching service.Comment: Published in the Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (IEEE SECON 2014

    Map matching by using inertial sensors: literature review

    Get PDF
    This literature review aims to clarify what is known about map matching by using inertial sensors and what are the requirements for map matching, inertial sensors, placement and possible complementary position technology. The target is to develop a wearable location system that can position itself within a complex construction environment automatically with the aid of an accurate building model. The wearable location system should work on a tablet computer which is running an augmented reality (AR) solution and is capable of track and visualize 3D-CAD models in real environment. The wearable location system is needed to support the system in initialization of the accurate camera pose calculation and automatically ๏ฌnding the right location in the 3D-CAD model. One type of sensor which does seem applicable to people tracking is inertial measurement unit (IMU). The IMU sensors in aerospace applications, based on laser based gyroscopes, are big but provide a very accurate position estimation with a limited drift. Small and light units such as those based on Micro-Electro-Mechanical (MEMS) sensors are becoming very popular, but they have a signi๏ฌcant bias and therefore su๏ฌ€er from large drifts and require method for calibration like map matching. The system requires very little ๏ฌxed infrastructure, the monetary cost is proportional to the number of users, rather than to the coverage area as is the case for traditional absolute indoor location systems.Siirretty Doriast
    • โ€ฆ
    corecore