2,551 research outputs found

    3D Scanning, Imaging, and Printing in Orthodontics

    Get PDF

    A Framework for Automatically Realizing Assembly Sequence Changes in a Virtual Manufacturing Environment

    Get PDF
    © 2016 The Authors. Global market pressures and the rapid evolution of technologies and materials force manufacturers to constantly design, develop and produce new and varied products to maintain a competitive edge. Although virtual design and engineering tools have been key to supporting this fast rate of change, there remains a lack of seamless integration between and within tools across the domains of product, process, and resource design-especially to accommodate change. This research examines how changes to designs within these three domains can be captured and evaluated within a component based engineering tool (vueOne, developed by the Automation Systems Group at the University of Warwick). This paper describes how and where data within these tools can be mapped to quickly evaluate change (where typically a tedious process of data entry is required) decreasing lead times and cost and increasing productivity. The approach is tested on a sub-assembly of a hydrogen fuel cell, where an assembly system is modelled and changes are made to the sequence which is translated through to control logic. Although full implementation has not yet been realized, the concept has the potential to radically change the way changes are made and the approach can be extended to supporting other change types provided the appropriate rules and mapping

    Independent innovation through digital fabrication focusing on explorations in reconfigurable pin tooling

    Full text link
    This research investigates how new manufacturing concepts can be developed by individual practitioners and small manufacturing companies facilitated by an increased diffusion of digital fabrication tools and knowledge resources. Within this innovation scenario the study is particularly focused on exploring the early stages of research and development, rather than phases concerning product testing and marketing. This thesis provides data from a practice-based study with a technical focus on the development of fabrication concepts based on an underutilised fabrication concept known as Reconfigurable Pin Tooling (RPT). This manufacturing idea has also been described as ‘universal’ or ‘ideal’ tooling and has attracted interest from a number of researchers and inventors since the mid nineteen century (Munro and Walczyk, 2007). Although presenting potential advantages compared with conventional production systems, the concept has only been used in very few practical and commercial applications. Developments in digital technologies are now providing the technical foundations for developing new RPT systems and applications. The practice element of this study features two strands of enquiry. One concerns the development of an RPT system for the production of glass bowls within the researchers' own creative practice. The other practice strand was guided by interaction with a local furniture company, MARK Product, and focussed on the development of an RPT system for shaping upholstery foam. In combination, the two practice elements served to investigate tools, factors, and approaches that are involved when independent practitioners engage in innovation in the context of digital fabrication. Results from both investigations provide new insights into the independent innovation in this field. Original knowledge contributions from this research include the development of two novel RPT applications with a number of new technical solutions also having been established as a result of this study. Equally, the exploration of the glass RPT concept led to the productions of original artistic output, which is presented as evidence for the creative potential of this RPT concept. Furthermore, the study resulted in the development of a new approach for recording research data in rich II media format via an IOS database template. Conceptual knowledge contributions concern concepts and aspects that are relevant to independent innovators operating in the context of digital fabrication, building on the work of Smith and Von Hipple (2005; 2005). Reflections of this study in relation to S-curve theory (Christensen, 1997; Foster, 1986) are also included. The insights from this research have resulted in a concluding argument which proposes that an innovation toolset, which is combined by several facilitating aspects, can be seen as enabling individual practitioners to shift from operating within an individual innovation sphere to a position where they are able to make a valuable contribution in sectors beyond their own practice
    • …
    corecore