766 research outputs found

    Experimental Evaluation of Desktop Operating Systems Networking Performance

    Get PDF
    The rapid advancement of network, communication and Internet technology resulted with always-on, always-connected, device-independent and remote online working, business, education and entertainment environment. Consequently, users are searching for solutions and technologies that enable fast and reliable wide area network connection and the typical solution is through using personal computers connected with ethernet cable to network equipment and infrastructure that supports gigabit ethernet connection. Besides the complex network infrastructure that can influence performance, the bottleneck can also be caused by insufficient hardware, operating system and software resources on clients’ machines. Therefore, in this paper a networking performance evaluation of three globally most common and most used versions of Windows operating systems; namely Windows 7TM, Windows 8.1TM and Windows 10TM, on two identical computer systems, is conducted. Networking performance measurements are performed with three different benchmarks: namely iPerf, D-ITG and NetStress. Performance evaluation results showed that a newer versions of an operating system bring certain networking performance improvements but by sacrificing other performances

    Internet... the final frontier: an ethnographic account: exploring the cultural space of the Net from the inside

    Get PDF
    The research project The Internet as a space for interaction, which completed its mission in Autumn 1998, studied the constitutive features of network culture and network organisation. Special emphasis was given to the dynamic interplay of technical and social conventions regarding both the Net’s organisation as well as its change. The ethnographic perspective chosen studied the Internet from the inside. Research concentrated upon three fields of study: the hegemonial operating technology of net nodes (UNIX) the network’s basic transmission technology (the Internet Protocol IP) and a popular communication service (Usenet). The project’s final report includes the results of the three branches explored. Drawing upon the development in the three fields it is shown that changes that come about on the Net are neither anarchic nor arbitrary. Instead, the decentrally organised Internet is based upon technically and organisationally distributed forms of coordination within which individual preferences collectively attain the power of developing into definitive standards. --

    Access Control Mechanism for IoT Environments Based on Modelling Communication Procedures as Resources

    Get PDF
    Internet growth has generated new types of services where the use of sensors and actuators is especially remarkable. These services compose what is known as the Internet of Things (IoT). One of the biggest current challenges is obtaining a safe and easy access control scheme for the data managed in these services. We propose integrating IoT devices in an access control system designed for Web-based services by modelling certain IoT communication elements as resources. This would allow us to obtain a unified access control scheme between heterogeneous devices (IoT devices, Internet-based services, etc.). To achieve this, we have analysed the most relevant communication protocols for these kinds of environments and then we have proposed a methodology which allows the modelling of communication actions as resources. Then, we can protect these resources using access control mechanisms. The validation of our proposal has been carried out by selecting a communication protocol based on message exchange, specifically Message Queuing Telemetry Transport (MQTT). As an access control scheme, we have selected User-Managed Access (UMA), an existing Open Authorization (OAuth) 2.0 profile originally developed for the protection of Internet services. We have performed tests focused on validating the proposed solution in terms of the correctness of the access control system. Finally, we have evaluated the energy consumption overhead when using our proposal.Ministerio de Economía y CompetitividadUniversidad de Alcal

    Deploying RIOT operating system on a reconfigurable Internet of Things end-device

    Get PDF
    Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e ComputadoresThe Internet of Everything (IoE) is enabling the connection of an infinity of physical objects to the Internet, and has the potential to connect every single existing object in the world. This empowers a market with endless opportunities where the big players are forecasting, by 2020, more than 50 billion connected devices, representing an 8 trillion USD market. The IoE is a broad concept that comprises several technological areas and will certainly, include more in the future. Some of those already existing fields are the Internet of Energy related with the connectivity of electrical power grids, Internet of Medical Things (IoMT), for instance, enables patient monitoring, Internet of Industrial Things (IoIT), which is dedicated to industrial plants, and the Internet of Things (IoT) that focus on the connection of everyday objects (e.g. home appliances, wearables, transports, buildings, etc.) to the Internet. The diversity of scenarios where IoT can be deployed, and consequently the different constraints associated to each device, leads to a heterogeneous network composed by several communication technologies and protocols co-existing on the same physical space. Therefore, the key requirements of an IoT network are the connectivity and the interoperability between devices. Such requirement is achieved by the adoption of standard protocols and a well-defined lightweight network stack. Due to the adoption of a standard network stack, the data processed and transmitted between devices tends to increase. Because most of the devices connected are resource constrained, i.e., low memory, low processing capabilities, available energy, the communication can severally decrease the device’s performance. Hereupon, to tackle such issues without sacrificing other important requirements, this dissertation aims to deploy an operating system (OS) for IoT, the RIOT-OS, while providing a study on how network-related tasks can benefit from hardware accelerators (deployed on reconfigurable technology), specially designed to process and filter packets received by an IoT device.O conceito Internet of Everything (IoE) permite a conexão de uma infinidade de objetos à Internet e tem o potencial de conectar todos os objetos existentes no mundo. Favorecendo assim o aparecimento de novos mercados e infinitas possibilidades, em que os grandes intervenientes destes mercados preveem até 2020 a conexão de mais de 50 mil milhões de dispositivos, representando um mercado de 8 mil milhões de dólares. IoE é um amplo conceito que inclui várias áreas tecnológicas e irá certamente incluir mais no futuro. Algumas das áreas já existentes são: a Internet of Energy relacionada com a conexão de redes de transporte e distribuição de energia à Internet; Internet of Medical Things (IoMT), que possibilita a monotorização de pacientes; Internet of Industrial Things (IoIT), dedicada a instalações industriais e a Internet of Things (IoT), que foca na conexão de objetos do dia-a-dia (e.g. eletrodomésticos, wearables, transportes, edifícios, etc.) à Internet. A diversidade de cenários à qual IoT pode ser aplicado, e consequentemente, as diferentes restrições aplicadas a cada dispositivo, levam à criação de uma rede heterogénea composto por diversas tecnologias de comunicação e protocolos a coexistir no mesmo espaço físico. Desta forma, os requisitos chave aplicados às redes IoT são a conectividade e interoperabilidade entre dispositivos. Estes requisitos são atingidos com a adoção de protocolos standard e pilhas de comunicação bem definidas. Com a adoção de pilhas de comunicação standard, a informação processada e transmitida entre dispostos tende a aumentar. Visto que a maioria dos dispositivos conectados possuem escaços recursos, i.e., memória reduzida, baixa capacidade de processamento, pouca energia disponível, o aumento da capacidade de comunicação pode degradar o desempenho destes dispositivos. Posto isto, para lidar com estes problemas e sem sacrificar outros requisitos importantes, esta dissertação pretende fazer o porting de um sistema operativo IoT, o RIOT, para uma solução reconfigurável, o CUTE mote. O principal objetivo consiste na realização de um estudo sobre os benefícios que as tarefas relacionadas com as camadas de rede podem ter ao serem executadas em hardware via aceleradores dedicados. Estes aceleradores são especialmente projetados para processar e filtrar pacotes de dados provenientes de uma interface radio em redes IoT periféricas

    Performance Evaluation of Hadoop based Big Data Applications with HiBench Benchmarking tool on IaaS Cloud Platforms

    Get PDF
    Cloud computing is a computing paradigm where large numbers of devices are connected through networks that provide a dynamically scalable infrastructure for applications, data and storage. Currently, many businesses, from small scale to big companies and industries, are changing their operations to utilize cloud services because cloud platforms could increase company’s growth through process efficiency and reduction in information technology spending [Coles16]. Companies are relying on cloud platforms like Amazon Web Services, Google Compute Engine, and Microsoft Azure, etc., for their business development. Due to the emergence of new technologies, devices, and communications, the amount of data produced is growing rapidly every day. Big data is a collection of large dataset, typically hundreds of gigabytes, terabytes or petabytes. Big data storage and the analytics of this huge volume of data are a great challenge for companies and new businesses to handle, which is a primary focus of this paper. This research was conducted on Amazon’s Elastic Compute Cloud (EC2) and Microsoft Azure platforms using the HiBench Hadoop Big Data Benchmark suite [HiBench16]. Processing huge volumes of data is a tedious task that is normally handled through traditional database servers. In contrast, Hadoop is a powerful framework is used to handle applications with big data requirements efficiently by using the MapReduce algorithm to run them on systems with many commodity hardware nodes. Hadoop’s distributed file system facilitates rapid storage and data transfer rates of big data among the nodes and remains operational even when a node failure has occurred in a cluster. HiBench is a big data benchmarking tool that is used for evaluating the performance of big data applications whose data are handled and controlled by the Hadoop framework cluster. Hadoop cluster environment was enabled and evaluated on two cloud platforms. A quantitative comparison was performed on Amazon EC2 and Microsoft Azure along with a study of their pricing models. Measures are suggested for future studies and research

    Semantic multimedia remote display for mobile thin clients

    Get PDF
    Current remote display technologies for mobile thin clients convert practically all types of graphical content into sequences of images rendered by the client. Consequently, important information concerning the content semantics is lost. The present paper goes beyond this bottleneck by developing a semantic multimedia remote display. The principle consists of representing the graphical content as a real-time interactive multimedia scene graph. The underlying architecture features novel components for scene-graph creation and management, as well as for user interactivity handling. The experimental setup considers the Linux X windows system and BiFS/LASeR multimedia scene technologies on the server and client sides, respectively. The implemented solution was benchmarked against currently deployed solutions (VNC and Microsoft-RDP), by considering text editing and WWW browsing applications. The quantitative assessments demonstrate: (1) visual quality expressed by seven objective metrics, e.g., PSNR values between 30 and 42 dB or SSIM values larger than 0.9999; (2) downlink bandwidth gain factors ranging from 2 to 60; (3) real-time user event management expressed by network round-trip time reduction by factors of 4-6 and by uplink bandwidth gain factors from 3 to 10; (4) feasible CPU activity, larger than in the RDP case but reduced by a factor of 1.5 with respect to the VNC-HEXTILE

    Expressive policy based authorization model for resource-constrained device sensors.

    Get PDF
    Los capítulos II, III y IV están sujetos a confidencialidad por el autor 92 p.Upcoming smart scenarios enabled by the Internet of Things (IoT) envision smart objects that expose services that can adapt to user behavior or be managed with the goal of achieving higher productivity, often in multistakeholder applications. In such environments, smart things are cheap sensors (and actuators) and, therefore, constrained devices. However, they are also critical components because of the importance of the provided information. Given that, strong security in general and access control in particular is a must.However, tightness, feasibility and usability of existing access control models do not cope well with the principle of least privilege; they lack both expressiveness and the ability to update the policy to be enforced in the sensors. In fact, (1) traditional access control solutions are not feasible in all constrained devices due their big impact on the performance although they provide the highest effectiveness by means of tightness and flexibility. (2) Recent access control solutions designed for constrained devices can be implemented only in not so constrained ones and lack policy expressiveness in the local authorization enforcement. (3) Access control solutions currently feasible in the most severely constrained devices have been based on authentication and very coarse grained and static policies, scale badly, and lack a feasible policy based access control solution aware of local context of sensors.Therefore, there is a need for a suitable End-to-End (E2E) access control model to provide fine grained authorization services in service oriented open scenarios, where operation and management access is by nature dynamic and that integrate massively deployed constrained but manageable sensors. Precisely, the main contribution of this thesis is the specification of such a highly expressive E2E access control model suitable for all sensors including the most severely constrained ones. Concretely, the proposed E2E access control model consists of three main foundations. (1) A hybrid architecture, which combines advantages of both centralized and distributed architectures to enable multi-step authorization. Fine granularity of the enforcement is enabled by (2) an efficient policy language and codification, which are specifically defined to gain expressiveness in the authorization policies and to ensure viability in very-constrained devices. The policy language definition enables both to make granting decisions based on local context conditions, and to react accordingly to the requests by the execution of additional tasks defined as obligations.The policy evaluation and enforcement is performed not only during the security association establishment but also afterward, while such security association is in use. Moreover, this novel model provides also control over access behavior, since iterative re-evaluation of the policy is enabled during each individual resource access.Finally, (3) the establishment of an E2E security association between two mutually authenticated peers through a security protocol named Hidra. Such Hidra protocol, based on symmetric key cryptography, relies on the hybrid three-party architecture to enable multi-step authorization as well as the instant provisioning of a dynamic security policy in the sensors. Hidra also enables delegated accounting and audit trail. Proposed access control features cope with tightness, feasibility and both dimensions of usability such as scalability and manageability, which are the key unsolved challenges in the foreseen open and dynamic scenarios enabled by IoT. Related to efficiency, the high compression factor of the proposed policy codification and the optimized Hidra security protocol relying on a symmetric cryptographic schema enable the feasibility as it is demonstrated by the validation assessment. Specifically, the security evaluation and both the analytical and experimental performance evaluation demonstrate the feasibility and adequacy of the proposed protocol and access control model.Concretely, the security validation consists of the assessment that the Hidra security protocol meets the security goals of mutual strong authentication, fine-grained authorization, confidentiality and integrity of secret data and accounting. The security analysis of Hidra conveys on the one hand, how the design aspects of the message exchange contribute to the resilience against potential attacks. On the other hand, a formal security validation supported by a software tool named AVISPA ensures the absence of flaws and the correctness of the design of Hidra.The performance validation is based on an analytical performance evaluation and a test-bed implementation of the proposed access control model for the most severely constrained devices. The key performance factor is the length of the policy instance, since it impacts proportionally on the three critical parameters such as the delay, energy consumption, memory footprint and therefore, on the feasibility.Attending to the obtained performance measures, it can be concluded that the proposed policy language keeps such balance since it enables expressive policy instances but always under limited length values. Additionally, the proposed policy codification improves notably the performance of the protocol since it results in the best policy length compression factor compared with currently existing and adopted standards.Therefore, the assessed access control model is the first approach to bring to severely constrained devices a similar expressiveness level for enforcement and accounting as in current Internet. The positive performance evaluation concludes the feasibility and suitability of this access control model, which notably rises the security features on severely constrained devices for the incoming smart scenarios.Additionally, there is no comparable impact assessment of policy expressiveness of any other access control model. That is, the presented analysis models as well as results might be a reference for further analysis and benchmarkingGaur egun darabilzkigun hainbeste gailutan mikroprozesadoreak daude txertatuta, eragiten duten prozesuan neurketak egin eta logika baten ondorioz ekiteko. Horretarako, bai sentsoreak eta baita aktuadoreak erabiltzen dira (hemendik aurrera, komunitatean onartuta dagoenez, sentsoreak esango diegu nahiz eta erabilpen biak izan). Orain arteko erabilpen zabalenetako konekzio motak, banaka edota sare lokaletan konekatuta izan dira. Era honetan, sentsoreak elkarlanean elkarreri eraginez edota zerbitzari nagusi baten agindupean, erakunde baten prozesuak ahalbideratu eta hobetzeko erabili izan dira.Internet of Things (IoT) deritzonak, sentsoreak dituzten gailuak Internet sarearen bidez konektatu eta prozesu zabalagoak eta eraginkorragoak ahalbidetzen ditu. Smartcity, Smartgrid, Smartfactory eta bestelako smart adimendun ekosistemak, gaur egun dauden eta datozen komunikaziorako teknologien aukerak baliatuz, erabilpen berriak ahalbideratu eta eragina areagotzea dute helburu.Era honetan, ekosistema hauek zabalak dira, eremu ezberdinetako erakundeek hartzen dute parte, eta berariazko sentsoreak dituzten gailuen kopurua izugarri handia da. Sentsoreak beraz, berariazkoak, merkeak eta txikiak dira, eta orain arteko lehenengo erabilpen nagusia, magnitude fisikoren bat neurtzea eta neurketa hauek zerbitzari zentralizatu batera bidaltzea izan da. Hau da, inguruan gertatzen direnak neurtu, eta zerbitzari jakin bati neurrien datuak aldiro aldiro edota atari baten baldintzapean igorri. Zerbitzariak logika aplikatu eta sistema osoa adimendun moduan jardungo du. Jokabide honetan, aurretik ezagunak diren entitateen arteko komunikazioen segurtasuna bermatzearen kexka, nahiz eta Internetetik pasatu, hein onargarri batean ebatzita dago gaur egun.Baina adimendun ekosistema aurreratuak sentsoreengandik beste jokabide bat ere aurreikusten dute. Sentsoreek eurekin harremanak izateko moduko zerbitzuak ere eskaintzen dituzte. Erakunde baten prozesuetan, beste jatorri bateko erakundeekin elkarlanean, jokabide honen erabilpen nagusiak bi dira. Batetik, prozesuan parte hartzen duen erabiltzaileak (eta jabeak izan beharrik ez duenak) inguruarekin harremanak izan litzake, eta bere ekintzetan gailuak bere berezitasunetara egokitzearen beharrizana izan litzake. Bestetik, sentsoreen jarduera eta mantenimendua zaintzen duten teknikariek, beroriek egokitzeko zerbitzuen beharrizana izan dezakete.Holako harremanak, sentsoreen eta erabiltzaileen kokalekua zehaztugabea izanik, kasu askotan Internet bidez eta zuzenak (end-to-end) izatea aurreikusten da. Hau da, sentsore txiki asko daude handik hemendik sistemaren adimena ahalbidetuz, eta harreman zuzenetarako zerbitzu ñimiñoak eskainiz. Batetik, zerbitzu zuzena, errazagoa eta eraginkorragoa dena, bestetik erronkak ere baditu. Izan ere, sentsoreak hain txikiak izanik, ezin dituzte gaur egungo protokolo eta mekanismo estandarak gauzatu. Beraz, sare mailatik eta aplikazio mailarainoko berariazko protokoloak sortzen ari dira.Tamalez, protokolo hauek arinak izatea dute helburu eta segurtasuna ez dute behar den moduan aztertu eta gauzatzen. Eta egon badaude berariazko sarbide kontrolerako ereduak baina baliabideen urritasuna dela eta, ez dira ez zorrotzak ez kudeagarriak. Are gehiago, Gartnerren arabera, erabilpen aurreratuetan inbertsioa gaur egun mugatzen duen traba Nagusia segurtasunarekiko mesfidantza da.Eta hauxe da erronka eta tesi honek landu duen gaia: batetik sentsoreak hain txikiak izanik, eta baliabideak hain urriak (10kB RAM, 100 kB Flash eta bateriak, sentsore txikienetarikoetan), eta bestetik Internet sarea hain zabala eta arriskutsua izanik, segurtasuna areagotuko duen sarbide zuzenaren kontrolerako eredu zorrotz, arin eta kudeagarri berri bat zehaztu eta bere erabilgarritasuna aztertu

    Asiakasreunakytkennän testausalustan kehitys

    Get PDF
    Customer Edge Switching (CES) and Realm Gateway (RGW) are technologies designed to solve core challenges of the modern Internet. Challenges include the ever increasing amount of devices connected to the Internet and risks created by malicious parties. CES and RGW leverage existing technologies like Domain Name System (DNS). Software testing is critical for ensuring correctness of software. It aims to ensure that products and protocols operate correctly. Testing also aims to find any critical vulnerabilities in the products. Fuzz testing is a field of software testing allowing automatic iteration of unexpected inputs. In this thesis work we evaluate two CES versions in performance, in susceptibility of Denial of Service (DoS) and in weaknesses related to use of DNS. Performance is an important metric for switches. Denial of Service is a very common attack vector and use of DNS in new ways requires critical evaluation. The performance of the old version was sufficient. Some clear issues were found. The version was vulnerable against DoS. Oversights in DNS operation were found. The new version shows improvement over the old one. We also evaluated suitability of expanding Robot Framework for fuzz testing Customer Edge Traversal Protocol (CETP). We conclude that the use of the Framework was not the best approach. We also developed a new testing framework using Robot Framework for the new version of CES.Customer Edge Switching (CES) asiakasreunakytkentä ja Realm Gateway (RGW) alueen yhdyskäytävä tarjoavat ratkaisuja modernin Internetin ydinongelmiin. Ydinongelmiin kuuluvat kytkettyjen laitteiden määrän jatkuva kasvu ja pahantahtoisten tahojen luomat riskit. CES ja RGW hyödyntävät olemassa olevia tekniikoita kuten nimipalvelua (DNS). Ohjelmistojen oikeellisuuden varmistuksessa testaus on välttämätöntä. Sen tavoitteena on varmistaa tuotteiden ja protokollien oikea toiminnallisuus. Testaus myös yrittää löytää kriittiset haavoittuvuudet ohjelmistoissa. Sumea testaus on ohjelmistotestauksen alue, joka mahdollistaa odottamattomien syötteiden automaattisen läpikäynnin. Tässä työssä arvioimme kahden CES version suorituskykyä, palvelunestohyökkäyksien sietoa ja nimipalvelun käyttöön liittyviä heikkouksia. Suorituskyky on tärkeä mittari kytkimille. Palvelunesto on erittäin yleinen hyökkäystapa ja nimipalvelun uudenlainen käyttö vaatii kriittistä arviointia. Vanhan version suorituskyky oli riittävä. Joitain selviä ongelmia löydettiin. Versio oli haavoittuvainen palvelunestohyökkäyksille. Löysimme epätarkkuuksia nimipalveluiden toiminnassa. Uusi versio vaikuttaa paremmalta kuin vanha versio. Arvioimme työssä myös Robot Framework testausalustan laajentamisen soveltuvuutta Customer Edge Traversal Protocol (CETP) asiakasreunalävistysprotokollan sumeaan testaukseen. Toteamme, ettei alustan käyttö ollut paras lähestymistapa. Esitämme myös työmme Robot Framework alustaa hyödyntävän testausalustan kehityksessä nykyiselle CES versiolle. Kehitimme myös uuden testausalustan uudelle CES versiolle hyödyntäen Robot Frameworkia

    Packet filter performance monitor (anti-DDOS algorithm for hybrid topologies)

    Get PDF
    DDoS attacks are increasingly becoming a major problem. According to Arbor Networks, the largest DDoS attack reported by a respondent in 2015 was 500 Gbps. Hacker News stated that the largest DDoS attack as of March 2016 was over 600 Gbps, and the attack targeted the entire BBC website. With this increasing frequency and threat, and the average DDoS attack duration at about 16 hours, we know for certain that DDoS attacks will not be going away anytime soon. Commercial companies are not effectively providing mitigation techniques against these attacks, considering that major corporations face the same challenges. Current security appliances are not strong enough to handle the overwhelming traffic that accompanies current DDoS attacks. There is also a limited research on solutions to mitigate DDoS attacks. Therefore, there is a need for a means of mitigating DDoS attacks in order to minimize downtime. One possible solution is for organizations to implement their own architectures that are meant to mitigate DDoS attacks. In this dissertation, we present and implement an architecture that utilizes an activity monitor to change the states of firewalls based on their performance in a hybrid network. Both firewalls are connected inline. The monitor is mirrored to monitor the firewall states. The monitor reroutes traffic when one of the firewalls become overwhelmed due to a HTTP DDoS flooding attack. The monitor connects to the API of both firewalls. The communication between the rewalls and monitor is encrypted using AES, based on PyCrypto Python implementation. This dissertation is structured in three parts. The first found the weakness of the hardware firewall and determined its threshold based on spike and endurance tests. This was achieved by flooding the hardware firewall with HTTP packets until the firewall became overwhelmed and unresponsive. The second part implements the same test as the first, but targeted towards the virtual firewall. The same parameters, test factors, and determinants were used; however a different load tester was utilized. The final part was the implementation and design of the firewall performance monitor. The main goal of the dissertation is to minimize downtime when network firewalls are overwhelmed as a result of a DDoS attack
    corecore