312 research outputs found

    Photo-consistent surface reconstruction from noisy point clouds

    Get PDF
    International audienceExisting algorithms for surface reconstruction from point sets are defeated by moderate amounts of noise and outliers, which makes them unapplicable to point clouds originating from multi-view image data. In this paper, we present a novel method which incorporates the input images in the surface reconstruction process for a better accuracy and robustness. Our approach is based on the medial axis transform of the scene, which our algorithm estimates through a global photo-consistency optimization by simulated annealing. A faithful polyhedral representation of the scene is then obtained by inversion of the medial axis transform

    A Bayesian Approach to Manifold Topology Reconstruction

    Get PDF
    In this paper, we investigate the problem of statistical reconstruction of piecewise linear manifold topology. Given a noisy, probably undersampled point cloud from a one- or two-manifold, the algorithm reconstructs an approximated most likely mesh in a Bayesian sense from which the sample might have been taken. We incorporate statistical priors on the object geometry to improve the reconstruction quality if additional knowledge about the class of original shapes is available. The priors can be formulated analytically or learned from example geometry with known manifold tessellation. The statistical objective function is approximated by a linear programming / integer programming problem, for which a globally optimal solution is found. We apply the algorithm to a set of 2D and 3D reconstruction examples, demon-strating that a statistics-based manifold reconstruction is feasible, and still yields plausible results in situations where sampling conditions are violated

    Surface Reconstruction from Noisy Point Clouds

    Get PDF
    We show that a simple modification of the power crust algorithm for surface reconstruction produces correct outputs in presence of noise. This is proved using a fairly realistic noise model. Our theoretical results are related to the problem of computing a stable subset of the medial axis. We demostrate the effectiveness of our algorithm with a number of experimental results

    Automatic Retrieval of Skeletal Structures of Trees from Terrestrial Laser Scanner Data

    Get PDF
    Research on forest ecosystems receives high attention, especially nowadays with regard to sustainable management of renewable resources and the climate change. In particular, accurate information on the 3D structure of a tree is important for forest science and bioclimatology, but also in the scope of commercial applications. Conventional methods to measure geometric plant features are labor- and time-intensive. For detailed analysis, trees have to be cut down, which is often undesirable. Here, Terrestrial Laser Scanning (TLS) provides a particularly attractive tool because of its contactless measurement technique. The object geometry is reproduced as a 3D point cloud. The objective of this thesis is the automatic retrieval of the spatial structure of trees from TLS data. We focus on forest scenes with comparably high stand density and with many occlusions resulting from it. The varying level of detail of TLS data poses a big challenge. We present two fully automatic methods to obtain skeletal structures from scanned trees that have complementary properties. First, we explain a method that retrieves the entire tree skeleton from 3D data of co-registered scans. The branching structure is obtained from a voxel space representation by searching paths from branch tips to the trunk. The trunk is determined in advance from the 3D points. The skeleton of a tree is generated as a 3D line graph. Besides 3D coordinates and range, a scan provides 2D indices from the intensity image for each measurement. This is exploited in the second method that processes individual scans. Furthermore, we introduce a novel concept to manage TLS data that facilitated the researchwork. Initially, the range image is segmented into connected components. We describe a procedure to retrieve the boundary of a component that is capable of tracing inner depth discontinuities. A 2D skeleton is generated from the boundary information and used to decompose the component into sub components. A Principal Curve is computed from the 3D point set that is associated with a sub component. The skeletal structure of a connected component is summarized as a set of polylines. Objective evaluation of the results remains an open problem because the task itself is ill-defined: There exists no clear definition of what the true skeleton should be w.r.t. a given point set. Consequently, we are not able to assess the correctness of the methods quantitatively, but have to rely on visual assessment of results and provide a thorough discussion of the particularities of both methods. We present experiment results of both methods. The first method efficiently retrieves full skeletons of trees, which approximate the branching structure. The level of detail is mainly governed by the voxel space and therefore, smaller branches are reproduced inadequately. The second method retrieves partial skeletons of a tree with high reproduction accuracy. The method is sensitive to noise in the boundary, but the results are very promising. There are plenty of possibilities to enhance the method’s robustness. The combination of the strengths of both presented methods needs to be investigated further and may lead to a robust way to obtain complete tree skeletons from TLS data automatically.Die Erforschung des ÖkosystemsWald spielt gerade heutzutage im Hinblick auf den nachhaltigen Umgang mit nachwachsenden Rohstoffen und den Klimawandel eine große Rolle. Insbesondere die exakte Beschreibung der dreidimensionalen Struktur eines Baumes ist wichtig für die Forstwissenschaften und Bioklimatologie, aber auch im Rahmen kommerzieller Anwendungen. Die konventionellen Methoden um geometrische Pflanzenmerkmale zu messen sind arbeitsintensiv und zeitaufwändig. Für eine genaue Analyse müssen Bäume gefällt werden, was oft unerwünscht ist. Hierbei bietet sich das Terrestrische Laserscanning (TLS) als besonders attraktives Werkzeug aufgrund seines kontaktlosen Messprinzips an. Die Objektgeometrie wird als 3D-Punktwolke wiedergegeben. Basierend darauf ist das Ziel der Arbeit die automatische Bestimmung der räumlichen Baumstruktur aus TLS-Daten. Der Fokus liegt dabei auf Waldszenen mit vergleichsweise hoher Bestandesdichte und mit zahlreichen daraus resultierenden Verdeckungen. Die Auswertung dieser TLS-Daten, die einen unterschiedlichen Grad an Detailreichtum aufweisen, stellt eine große Herausforderung dar. Zwei vollautomatische Methoden zur Generierung von Skelettstrukturen von gescannten Bäumen, welche komplementäre Eigenschaften besitzen, werden vorgestellt. Bei der ersten Methode wird das Gesamtskelett eines Baumes aus 3D-Daten von registrierten Scans bestimmt. Die Aststruktur wird von einer Voxelraum-Repräsentation abgeleitet indem Pfade von Astspitzen zum Stamm gesucht werden. Der Stamm wird im Voraus aus den 3D-Punkten rekonstruiert. Das Baumskelett wird als 3D-Liniengraph erzeugt. Für jeden gemessenen Punkt stellt ein Scan neben 3D-Koordinaten und Distanzwerten auch 2D-Indizes zur Verfügung, die sich aus dem Intensitätsbild ergeben. Bei der zweiten Methode, die auf Einzelscans arbeitet, wird dies ausgenutzt. Außerdem wird ein neuartiges Konzept zum Management von TLS-Daten beschrieben, welches die Forschungsarbeit erleichtert hat. Zunächst wird das Tiefenbild in Komponenten aufgeteilt. Es wird eine Prozedur zur Bestimmung von Komponentenkonturen vorgestellt, die in der Lage ist innere Tiefendiskontinuitäten zu verfolgen. Von der Konturinformation wird ein 2D-Skelett generiert, welches benutzt wird um die Komponente in Teilkomponenten zu zerlegen. Von der 3D-Punktmenge, die mit einer Teilkomponente assoziiert ist, wird eine Principal Curve berechnet. Die Skelettstruktur einer Komponente im Tiefenbild wird als Menge von Polylinien zusammengefasst. Die objektive Evaluation der Resultate stellt weiterhin ein ungelöstes Problem dar, weil die Aufgabe selbst nicht klar erfassbar ist: Es existiert keine eindeutige Definition davon was das wahre Skelett in Bezug auf eine gegebene Punktmenge sein sollte. Die Korrektheit der Methoden kann daher nicht quantitativ beschrieben werden. Aus diesem Grund, können die Ergebnisse nur visuell beurteiltwerden. Weiterhinwerden die Charakteristiken beider Methoden eingehend diskutiert. Es werden Experimentresultate beider Methoden vorgestellt. Die erste Methode bestimmt effizient das Skelett eines Baumes, welches die Aststruktur approximiert. Der Detaillierungsgrad wird hauptsächlich durch den Voxelraum bestimmt, weshalb kleinere Äste nicht angemessen reproduziert werden. Die zweite Methode rekonstruiert Teilskelette eines Baums mit hoher Detailtreue. Die Methode reagiert sensibel auf Rauschen in der Kontur, dennoch sind die Ergebnisse vielversprechend. Es gibt eine Vielzahl von Möglichkeiten die Robustheit der Methode zu verbessern. Die Kombination der Stärken von beiden präsentierten Methoden sollte weiter untersucht werden und kann zu einem robusteren Ansatz führen um vollständige Baumskelette automatisch aus TLS-Daten zu generieren

    Décomposition volumique d'images pour l'étude de la microstructure de la neige

    Get PDF
    Les avalanches de neige sont des phénomènes naturels complexes dont l'occurrence s'explique principalement par la structure et les propriétés du manteau neigeux. Afin de mieux comprendre les évolutions de ces propriétés au cours du temps, il est important de pouvoir caractériser la microstructure de la neige, notamment en termes de grains et de ponts de glace les reliant. Dans ce contexte, l'objectif de cette thèse est la décomposition d'échantillons de neige en grains individuels à partir d'images 3-D de neige obtenues par microtomographie X. Nous présentons ici deux méthodes de décomposition utilisant des algorithmes de géométrie discrète. Sur la base des résultats de ces segmentations, certains paramètres, comme la surface spécifique et la surface spécifique de contact entre grains sont ensuite estimés sur des échantillons de neiges variées. Ces méthodes de segmentation ouvrent de nouvelles perspectives pour la caractérisation de la microstructure de la neige, de ses propriétés, ainsi que de leur évolution au cours du temps.Snow avalanches are complex natural phenomena whose occurrence is mainly due to the structure and properties of the snowpack. To better understand the evolution of these properties over time, it is important to characterize the microstructure of snow, especially in terms of grains and ice necks that connect them. In this context, the objective of this thesis is the decomposition of snow samples into individual grains from 3-D images of snow obtained by X-ray microtomography. We present two decomposition methods using algorithms of discrete geometry. Based on the results of these segmentations, some parameters such as the specific surface area and the specific contact area between grains are then estimated from samples of several snow types. These segmentation methods offer new outlooks for the characterization of the microstructure of snow, its properties, and its time evolution

    A Bayesian Approach to Manifold Topology Reconstruction

    Get PDF
    In this paper, we investigate the problem of statistical reconstruction of piecewise linear manifold topology. Given a noisy, probably undersampled point cloud from a one- or two-manifold, the algorithm reconstructs an approximated most likely mesh in a Bayesian sense from which the sample might have been taken. We incorporate statistical priors on the object geometry to improve the reconstruction quality if additional knowledge about the class of original shapes is available. The priors can be formulated analytically or learned from example geometry with known manifold tessellation. The statistical objective function is approximated by a linear programming / integer programming problem, for which a globally optimal solution is found. We apply the algorithm to a set of 2D and 3D reconstruction examples, demon-strating that a statistics-based manifold reconstruction is feasible, and still yields plausible results in situations where sampling conditions are violated

    Reconstruction with Voronoi Centered Radial Basis Functions

    Get PDF
    The dinosaur model is courtesy of Cyberware, other models being courtesy of the AIM@SHAPE shape repositoryWe consider the problem of reconstructing a surface from scattered points sampled on a physical shape. The sampled shape is approximated as the zero level set of a function. This function is defined as a linear combination of compactly supported radial basis functions. We depart from previous work by using as centers of basis functions a set of points located on an estimate of the medial axis, instead of the input data points. Those centers are selected among the vertices of the Voronoi diagram of the sample data points. Being a Voronoi vertex, each center is associated with a maximal empty ball. We use the radius of this ball to adapt the support of each radial basis function. Our method can fit a user-defined budget of centers: The selected subset of Voronoi vertices is filtered using the notion of lambda medial axis, then clustered to fit the allocated budget

    Optimal Separable Algorithms to Compute the Reverse Euclidean Distance Transformation and Discrete Medial Axis in Arbitrary Dimension

    Full text link
    In binary images, the distance transformation (DT) and the geometrical skeleton extraction are classic tools for shape analysis. In this paper, we present time optimal algorithms to solve the reverse Euclidean distance transformation and the reversible medial axis extraction problems for dd-dimensional images. We also present a dd-dimensional medial axis filtering process that allows us to control the quality of the reconstructed shape

    Shape analysis and description based on the isometric invariances of topological skeletonization

    Get PDF
    ilustracionesIn this dissertation, we explore the problem of how to describe the shape of an object in 2D and 3D with a set of features that are invariant to isometric transformations. We focus to based our approach on the well-known Medial Axis Transform and its topological properties. We aim to study two problems. The first is how to find a shape representation of a segmented object that exhibits rotation, translation, and reflection invariance. The second problem is how to build a machine learning pipeline that uses the isometric invariance of the shape representation to do both classification and retrieval. Our proposed solution demonstrates competitive results compared to state-of-the-art approaches. We based our shape representation on the medial axis transform (MAT), sometimes called the topological skeleton. Accepted and well-studied properties of the medial axis include: homotopy preservation, rotation invariance, mediality, one pixel thickness, and the ability to fully reconstruct the object. These properties make the MAT a suitable input to create shape features; however, several problems arise because not all skeletonization methods satisfy all the above-mentioned properties at the same time. In general, skeletons based on thinning approaches preserve topology but are noise sensitive and do not allow a proper reconstruction. They are also not invariant to rotations. Voronoi skeletons also preserve topology and are rotation invariant, but do not have information about the thickness of the object, making reconstruction impossible. The Voronoi skeleton is an approximation of the real skeleton. The denser the sampling of the boundary, the better the approximation; however, a denser sampling makes the Voronoi diagram more computationally expensive. In contrast, distance transform methods allow the reconstruction of the original object by providing the distance from every pixel in the skeleton to the boundary. Moreover, they exhibit an acceptable degree of the properties listed above, but noise sensitivity remains an issue. Therefore, we selected distance transform medial axis methods as our skeletonization strategy, and focused on creating a new noise-free approach to solve the contour noise problem. To effectively classify an object, or perform any other task with features based on its shape, the descriptor needs to be a normalized, compact form: Φ\Phi should map every shape Ω\Omega to the same vector space Rn\mathrm{R}^{n}. This is not possible with skeletonization methods because the skeletons of different objects have different numbers of branches and different numbers of points, even when they belong to the same category. Consequently, we developed a strategy to extract features from the skeleton through the map Φ\Phi, which we used as an input to a machine learning approach. After developing our method for robust skeletonization, the next step is to use such skeleton into the machine learning pipeline to classify object into previously defined categories. We developed a set of skeletal features that were used as input data to the machine learning architectures. We ran experiments on MPEG7 and ModelNet40 dataset to test our approach in both 2D and 3D. Our experiments show results comparable with the state-of-the-art in shape classification and retrieval. Our experiments also show that our pipeline and our skeletal features exhibit some degree of invariance to isometric transformations. In this study, we sought to design an isometric invariant shape descriptor through robust skeletonization enforced by a feature extraction pipeline that exploits such invariance through a machine learning methodology. We conducted a set of classification and retrieval experiments over well-known benchmarks to validate our proposed method. (Tomado de la fuente)En esta disertación se explora el problema de cómo describir la forma de un objeto en 2D y 3D con un conjunto de características que sean invariantes a transformaciones isométricas. La metodología propuesta en este documento se enfoca en la Transformada del Eje Medio (Medial Axis Transform) y sus propiedades topológicas. Nuestro objetivo es estudiar dos problemas. El primero es encontrar una representación matemática de la forma de un objeto que exhiba invarianza a las operaciones de rotación, translación y reflexión. El segundo problema es como construir un modelo de machine learning que use esas invarianzas para las tareas de clasificación y consulta de objetos a través de su forma. El método propuesto en esta tesis muestra resultados competitivos en comparación con otros métodos del estado del arte. En este trabajo basamos nuestra representación de forma en la transformada del eje medio, a veces llamada esqueleto topológico. Algunas propiedades conocidas y bien estudiadas de la transformada del eje medio son: conservación de la homotopía, invarianza a la rotación, su grosor consiste en un solo pixel (1D), y la habilidad para reconstruir el objeto original a través de ella. Estas propiedades hacen de la transformada del eje medio un punto de partida adecuado para crear características de forma. Sin embargo, en este punto surgen varios problemas dado que no todos los métodos de esqueletización satisfacen, al mismo tiempo, todas las propiedades mencionadas anteriormente. En general, los esqueletos basados en enfoques de erosión morfológica conservan la topología del objeto, pero son sensibles al ruido y no permiten una reconstrucción adecuada. Además, no son invariantes a las rotaciones. Otro método de esqueletización son los esqueletos de Voronoi. Los esqueletos de Voronoi también conservan la topología y son invariantes a la rotación, pero no tienen información sobre el grosor del objeto, lo que hace imposible su reconstrucción. Cuanto más denso sea el muestreo del contorno del objeto, mejor será la aproximación. Sin embargo, un muestreo más denso hace que el diagrama de Voronoi sea más costoso computacionalmente. Por el contrario, los métodos basados en la transformada de la distancia permiten la reconstrucción del objeto original, ya que proporcionan la distancia desde cada píxel del esqueleto hasta su punto más cercano en el contorno. Además, exhiben un grado aceptable de las propiedades enumeradas anteriormente, aunque la sensibilidad al ruido sigue siendo un problema. Por lo tanto, en este documento seleccionamos los métodos basados en la transformada de la distancia como nuestra estrategia de esqueletización, y nos enfocamos en crear un nuevo enfoque que resuelva el problema del ruido en el contorno. Para clasificar eficazmente un objeto o realizar cualquier otra tarea con características basadas en su forma, el descriptor debe ser compacto y estar normalizado: Φ\Phi debe relacionar cada forma Ω\Omega al mismo espacio vectorial Rn\mathrm{R}^{n}. Esto no es posible con los métodos de esqueletización en el estado del arte, porque los esqueletos de diferentes objetos tienen diferentes números de ramas y diferentes números de puntos incluso cuando pertenecen a la misma categoría. Consecuentemente, en nuestra propuesta desarrollamos una estrategia para extraer características del esqueleto a través de la función Φ\Phi, que usamos como entrada para un enfoque de aprendizaje automático. % TODO completar con resultados. Después de desarrollar nuestro método de esqueletización robusta, el siguiente paso es usar dicho esqueleto en un modelo de aprendizaje de máquina para clasificar el objeto en categorías previamente definidas. Para ello se desarrolló un conjunto de características basadas en el eje medio que se utilizaron como datos de entrada para la arquitectura de aprendizaje automático. Realizamos experimentos en los conjuntos de datos: MPEG7 y ModelNet40 para probar nuestro enfoque tanto en 2D como en 3D. Nuestros experimentos muestran resultados comparables con el estado del arte en clasificación y consulta de formas (retrieval). Nuestros experimentos también muestran que el modelo desarrollado junto con nuestras características basadas en el eje medio son invariantes a las transformaciones isométricas. (Tomado de la fuente)Beca para Doctorados Nacionales de Colciencias, convocatoria 725 de 2015DoctoradoDoctor en IngenieríaVisión por computadora y aprendizaje automátic

    Man-made Surface Structures from Triangulated Point Clouds

    Get PDF
    Photogrammetry aims at reconstructing shape and dimensions of objects captured with cameras, 3D laser scanners or other spatial acquisition systems. While many acquisition techniques deliver triangulated point clouds with millions of vertices within seconds, the interpretation is usually left to the user. Especially when reconstructing man-made objects, one is interested in the underlying surface structure, which is not inherently present in the data. This includes the geometric shape of the object, e.g. cubical or cylindrical, as well as corresponding surface parameters, e.g. width, height and radius. Applications are manifold and range from industrial production control to architectural on-site measurements to large-scale city models. The goal of this thesis is to automatically derive such surface structures from triangulated 3D point clouds of man-made objects. They are defined as a compound of planar or curved geometric primitives. Model knowledge about typical primitives and relations between adjacent pairs of them should affect the reconstruction positively. After formulating a parametrized model for man-made surface structures, we develop a reconstruction framework with three processing steps: During a fast pre-segmentation exploiting local surface properties we divide the given surface mesh into planar regions. Making use of a model selection scheme based on minimizing the description length, this surface segmentation is free of control parameters and automatically yields an optimal number of segments. A subsequent refinement introduces a set of planar or curved geometric primitives and hierarchically merges adjacent regions based on their joint description length. A global classification and constraint parameter estimation combines the data-driven segmentation with high-level model knowledge. Therefore, we represent the surface structure with a graphical model and formulate factors based on likelihood as well as prior knowledge about parameter distributions and class probabilities. We infer the most probable setting of surface and relation classes with belief propagation and estimate an optimal surface parametrization with constraints induced by inter-regional relations. The process is specifically designed to work on noisy data with outliers and a few exceptional freeform regions not describable with geometric primitives. It yields full 3D surface structures with watertightly connected surface primitives of different types. The performance of the proposed framework is experimentally evaluated on various data sets. On small synthetically generated meshes we analyze the accuracy of the estimated surface parameters, the sensitivity w.r.t. various properties of the input data and w.r.t. model assumptions as well as the computational complexity. Additionally we demonstrate the flexibility w.r.t. different acquisition techniques on real data sets. The proposed method turns out to be accurate, reasonably fast and little sensitive to defects in the data or imprecise model assumptions.Künstliche Oberflächenstrukturen aus triangulierten Punktwolken Ein Ziel der Photogrammetrie ist die Rekonstruktion der Form und Größe von Objekten, die mit Kameras, 3D-Laserscannern und anderern räumlichen Erfassungssystemen aufgenommen wurden. Während viele Aufnahmetechniken innerhalb von Sekunden triangulierte Punktwolken mit Millionen von Punkten liefern, ist deren Interpretation gewöhnlicherweise dem Nutzer überlassen. Besonders bei der Rekonstruktion künstlicher Objekte (i.S.v. engl. man-made = „von Menschenhand gemacht“ ist man an der zugrunde liegenden Oberflächenstruktur interessiert, welche nicht inhärent in den Daten enthalten ist. Diese umfasst die geometrische Form des Objekts, z.B. quaderförmig oder zylindrisch, als auch die zugehörigen Oberflächenparameter, z.B. Breite, Höhe oder Radius. Die Anwendungen sind vielfältig und reichen von industriellen Fertigungskontrollen über architektonische Raumaufmaße bis hin zu großmaßstäbigen Stadtmodellen. Das Ziel dieser Arbeit ist es, solche Oberflächenstrukturen automatisch aus triangulierten Punktwolken von künstlichen Objekten abzuleiten. Sie sind definiert als ein Verbund ebener und gekrümmter geometrischer Primitive. Modellwissen über typische Primitive und Relationen zwischen Paaren von ihnen soll die Rekonstruktion positiv beeinflussen. Nachdem wir ein parametrisiertes Modell für künstliche Oberflächenstrukturen formuliert haben, entwickeln wir ein Rekonstruktionsverfahren mit drei Verarbeitungsschritten: Im Rahmen einer schnellen Vorsegmentierung, die lokale Oberflächeneigenschaften berücksichtigt, teilen wir die gegebene vermaschte Oberfläche in ebene Regionen. Unter Verwendung eines Schemas zur Modellauswahl, das auf der Minimierung der Beschreibungslänge beruht, ist diese Oberflächensegmentierung unabhängig von Kontrollparametern und liefert automatisch eine optimale Anzahl an Regionen. Eine anschließende Verbesserung führt eine Menge von ebenen und gekrümmten geometrischen Primitiven ein und fusioniert benachbarte Regionen hierarchisch basierend auf ihrer gemeinsamen Beschreibungslänge. Eine globale Klassifikation und bedingte Parameterschätzung verbindet die datengetriebene Segmentierung mit hochrangigem Modellwissen. Dazu stellen wir die Oberflächenstruktur in Form eines graphischen Modells dar und formulieren Faktoren basierend auf der Likelihood sowie auf apriori Wissen über die Parameterverteilungen und Klassenwahrscheinlichkeiten. Wir leiten die wahrscheinlichste Konfiguration von Flächen- und Relationsklassen mit Hilfe von Belief-Propagation ab und schätzen eine optimale Oberflächenparametrisierung mit Bedingungen, die durch die Relationen zwischen benachbarten Primitiven induziert werden. Der Prozess ist eigens für verrauschte Daten mit Ausreißern und wenigen Ausnahmeregionen konzipiert, die nicht durch geometrische Primitive beschreibbar sind. Er liefert wasserdichte 3D-Oberflächenstrukturen mit Oberflächenprimitiven verschiedener Art. Die Leistungsfähigkeit des vorgestellten Verfahrens wird an verschiedenen Datensätzen experimentell evaluiert. Auf kleinen, synthetisch generierten Oberflächen untersuchen wir die Genauigkeit der geschätzten Oberflächenparameter, die Sensitivität bzgl. verschiedener Eigenschaften der Eingangsdaten und bzgl. Modellannahmen sowie die Rechenkomplexität. Außerdem demonstrieren wir die Flexibilität bzgl. verschiedener Aufnahmetechniken anhand realer Datensätze. Das vorgestellte Rekonstruktionsverfahren erweist sich als genau, hinreichend schnell und wenig anfällig für Defekte in den Daten oder falsche Modellannahmen
    corecore