10,811 research outputs found

    Magnetic Cellular Nonlinear Network with Spin Wave Bus for Image Processing

    Full text link
    We describe and analyze a cellular nonlinear network based on magnetic nanostructures for image processing. The network consists of magneto-electric cells integrated onto a common ferromagnetic film - spin wave bus. The magneto-electric cell is an artificial two-phase multiferroic structure comprising piezoelectric and ferromagnetic materials. A bit of information is assigned to the cell's magnetic polarization, which can be controlled by the applied voltage. The information exchange among the cells is via the spin waves propagating in the spin wave bus. Each cell changes its state as a combined effect of two: the magneto-electric coupling and the interaction with the spin waves. The distinct feature of the network with spin wave bus is the ability to control the inter-cell communication by an external global parameter - magnetic field. The latter makes possible to realize different image processing functions on the same template without rewiring or reconfiguration. We present the results of numerical simulations illustrating image filtering, erosion, dilation, horizontal and vertical line detection, inversion and edge detection accomplished on one template by the proper choice of the strength and direction of the external magnetic field. We also present numerical assets on the major network parameters such as cell density, power dissipation and functional throughput, and compare them with the parameters projected for other nano-architectures such as CMOL-CrossNet, Quantum Dot Cellular Automata, and Quantum Dot Image Processor. Potentially, the utilization of spin waves phenomena at the nanometer scale may provide a route to low-power consuming and functional logic circuits for special task data processing

    Reduced 30% scanning time 3D multiplexer integrated circuit applied to large array format 20KHZ frequency inkjet print heads

    Get PDF
    Enhancement of the number and array density of nozzles within an inkjet head chip is one of the keys to raise the printing speed and printing resolutions. However, traditional 2D architecture of driving circuits can not meet the requirement for high scanning speed and low data accessing points when nozzle numbers greater than 1000. This paper proposes a novel architecture of high-selection-speed three-dimensional data registration for inkjet applications. With the configuration of three-dimensional data registration, the number of data accessing points as well as the scanning lines can be greatly reduced for large array inkjet printheads with nozzles numbering more than 1000. This IC (Integrated Circuit) architecture involves three-dimensional multiplexing with the provision of a gating transistor for each ink firing resistor, where ink firing resistors are triggered only by the selection of their associated gating transistors. Three signals: selection (S), address (A), and power supply (P), are employed together to activate a nozzle for droplet ejection. The smart printhead controller has been designed by a 0.35 um CMOS process with a total circuit area, 2500 x 500 microm2, which is 80% of the cirucuit area by 2D configuration for 1000 nozzles. Experiment results demonstrate the functionality of the fabricated IC in operation, signal transmission and a potential to control more than 1000 nozzles with only 31 data access points and reduced 30% scanning time.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    A Compact CMOS Memristor Emulator Circuit and its Applications

    Full text link
    Conceptual memristors have recently gathered wider interest due to their diverse application in non-von Neumann computing, machine learning, neuromorphic computing, and chaotic circuits. We introduce a compact CMOS circuit that emulates idealized memristor characteristics and can bridge the gap between concepts to chip-scale realization by transcending device challenges. The CMOS memristor circuit embodies a two-terminal variable resistor whose resistance is controlled by the voltage applied across its terminals. The memristor 'state' is held in a capacitor that controls the resistor value. This work presents the design and simulation of the memristor emulation circuit, and applies it to a memcomputing application of maze solving using analog parallelism. Furthermore, the memristor emulator circuit can be designed and fabricated using standard commercial CMOS technologies and opens doors to interesting applications in neuromorphic and machine learning circuits.Comment: Submitted to International Symposium of Circuits and Systems (ISCAS) 201

    Nonphotolithographic nanoscale memory density prospects

    Get PDF
    Technologies are now emerging to construct molecular-scale electronic wires and switches using bottom-up self-assembly. This opens the possibility of constructing nanoscale circuits and memories where active devices are just a few nanometers square and wire pitches may be on the order of ten nanometers. The features can be defined at this scale without using photolithography. The available assembly techniques have relatively high defect rates compared to conventional lithographic integrated circuits and can only produce very regular structures. Nonetheless, with proper memory organization, it is reasonable to expect these technologies to provide memory densities in excess of 10/sup 11/ b/cm/sup 2/ with modest active power requirements under 0.6 W/Tb/s for random read operations

    Stochastic assembly of sublithographic nanoscale interfaces

    Get PDF
    We describe a technique for addressing individual nanoscale wires with microscale control wires without using lithographic-scale processing to define nanoscale dimensions. Such a scheme is necessary to exploit sublithographic nanoscale storage and computational devices. Our technique uses modulation doping to address individual nanowires and self-assembly to organize them into nanoscale-pitch decoder arrays. We show that if coded nanowires are chosen at random from a sufficiently large population, we can ensure that a large fraction of the selected nanowires have unique addresses. For example, we show that N lines can be uniquely addressed over 99% of the time using no more than /spl lceil/2.2log/sub 2/(N)/spl rceil/+11 address wires. We further show a hybrid decoder scheme that only needs to address N=O(W/sub litho-pitch//W/sub nano-pitch/) wires at a time through this stochastic scheme; as a result, the number of unique codes required for the nanowires does not grow with decoder size. We give an O(N/sup 2/) procedure to discover the addresses which are present. We also demonstrate schemes that tolerate the misalignment of nanowires which can occur during the self-assembly process

    PlasMOStor: A metal-oxide-Si field effect plasmonic modulator

    Get PDF
    Realization of chip-based all-optical and optoelectronic computational networks will require ultracompact Si-compatible modulators, ideally comprising dimensions, materials, and functionality similar to electronic complementary metal−oxide−semiconductor (CMOS) components. Here we demonstrate such a modulator, based on field-effect modulation of plasmon waveguide modes in a MOS geometry. Near-infrared transmission between an optical source and drain is controlled by a gate voltage that drives the MOS into accumulation. Using the gate oxide as an optical channel, electro-optic modulation is achieved in device volumes of half of a cubic wavelength with femtojoule switching energies and the potential for gigahertz modulation frequencies

    Nanoelectronic Design Based on a CNT Nano-Architecture

    Get PDF
    corecore