2,633 research outputs found

    A Component-Based Approach for Specifying DSML's Concrete Syntax

    Get PDF
    International audienceModel-Driven Engineering (MDE) encourages the use of graphical modeling tools, which facilitate the development process from modeling to coding. Such tools can be designed using the MDE approach into meta-modeling environments called metaCASE tools. It turned out that current metaCASE tools still require, in most cases, manual programming to build full tool support for the modeling language, especially for users' native methodologies and representational elements and propose limited possibilities in terms of reusability. In this context, we propose MID, a set of meta-models supporting the easy speci cation of modeling editors by means of reusable components and explain how representational meta-modeling is carried out with it

    The Impact of Petri Nets on System-of-Systems Engineering

    Get PDF
    The successful engineering of a large-scale system-of-systems project towards deterministic behaviour depends on integrating autonomous components using international communications standards in accordance with dynamic requirements. To-date, their engineering has been unsuccessful: no combination of top-down and bottom-up engineering perspectives is adopted, and information exchange protocol and interfaces between components are not being precisely specified. Various approaches such as modelling, and architecture frameworks make positive contributions to system-of-systems specification but their successful implementation is still a problem. One of the most popular modelling notations available for specifying systems, UML, is intuitive and graphical but also ambiguous and imprecise. Supplying a range of diagrams to represent a system under development, UML lacks simulation and exhaustive verification capability. This shortfall in UML has received little attention in the context of system-of-systems and there are two major research issues: 1. Where the dynamic, behavioural diagrams of UML can and cannot be used to model and analyse system-of-systems 2. Determining how Petri nets can be used to improve the specification and analysis of the dynamic model of a system-of-systems specified using UML This thesis presents the strengths and weaknesses of Petri nets in relation to the specification of system-of-systems and shows how Petri net models can be used instead of conventional UML Activity Diagrams. The model of the system-of-systems can then be analysed and verified using Petri net theory. The Petri net formalism of behaviour is demonstrated using two case studies from the military domain. The first case study uses Petri nets to specify and analyse a close air support mission. This case study concludes by indicating the strengths, weaknesses, and shortfalls of the proposed formalism in system-of-systems specification. The second case study considers specification of a military exchange network parameters problem and the results are compared with the strengths and weaknesses identified in the first case study. Finally, the results of the research are formulated in the form of a Petri net enhancement to UML (mapping existing activity diagram elements to Petri net elements) to meet the needs of system-of-systems specification, verification and validation

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis

    Software Architecture Description & UML Workshop

    Get PDF

    The DS-Pnet modeling formalism for cyber-physical system development

    Get PDF
    This work presents the DS-Pnet modeling formalism (Dataflow, Signals and Petri nets), designed for the development of cyber-physical systems, combining the characteristics of Petri nets and dataflows to support the modeling of mixed systems containing both reactive parts and data processing operations. Inheriting the features of the parent IOPT Petri net class, including an external interface composed of input and output signals and events, the addition of dataflow operations brings enhanced modeling capabilities to specify mathematical data transformations and graphically express the dependencies between signals. Data-centric systems, that do not require reactive controllers, are designed using pure dataflow models. Component based model composition enables reusing existing components, create libraries of previously tested components and hierarchically decompose complex systems into smaller sub-systems. A precise execution semantics was defined, considering the relationship between dataflow and Petri net nodes, providing an abstraction to define the interface between reactive controllers and input and output signals, including analog sensors and actuators. The new formalism is supported by the IOPT-Flow Web based tool framework, offering tools to design and edit models, simulate model execution on the Web browser, plus model-checking and software/hardware automatic code generation tools to implement controllers running on embedded devices (C,VHDL and JavaScript). A new communication protocol was created to permit the automatic implementation of distributed cyber-physical systems composed of networks of remote components communicating over the Internet. The editor tool connects directly to remote embedded devices running DS-Pnet models and may import remote components into new models, contributing to simplify the creation of distributed cyber-physical applications, where the communication between distributed components is specified just by drawing arcs. Several application examples were designed to validate the proposed formalism and the associated framework, ranging from hardware solutions, industrial applications to distributed software applications

    Generating graphical and projectional editors

    Full text link
    En ingénierie dirigée par les modèles, les langages spécifiques au domaine (DSL) offrent des notations adaptées à un domaine précis pour représenter ses différents concepts. De nombreux outils permettent la définition de DSLs en explicitant les relations entre un concept et ses représentations. En fonction de la sémantique du domaine, l’ingénieur du langage peut choisir entre des notations textuelles ou graphiques. Les langages de modélisation graphique nécessitent une gestion de la position, la taille et la disposition des éléments visuels afin de maximiser leur expressivité visuelle. La plupart des éditeurs de modélisation manquent de support automatique pour gérer ces propriétés de la syntaxe concrète. Les éditeurs projectionnels permettent aux utilisateurs de se concentrer sur la conception de leur modèle en limitant les modifications de la syntaxe concrète. Cependant, bien qu’ils offrent de multiples notations, ces éditeurs ne permettent pas la création de langage graphique. Dans ce mémoire, nous proposons une nouvelle approche pour concevoir des éditeurs graphiques et projectionnels. Nous avons créé une extension d’un éditeur projectionnel orienté vers le web, Gentleman, qui nous a permis d’extraire différentes exigences. Au cours du mémoire, nous décrivons leurs impacts sur les projections et proposons des lignes directrices ainsi que des exemples d’implémentation. Comme l’édition projectionnelle demande une gestion spécifique de l’interaction, nous présentons différentes approches pour interagir avec les représentations graphiques utilisant les nouvelles informations disponibles dans les projections. Étant donné que la plupart des exigences se concentrent sur la disposition des projections, nous avons défini plusieurs algorithmes simples de disposition qui couvrent une large gamme de structures pouvant être retrouvées dans un éditeur graphique. Enfin, afin d’évaluer cette approche, nous avons exploré la génération de trois éditeurs graphiques et projectionnels pour différents domaines: les machines d’états, les diagrammes de séquences et les partitions de musique.In model-driven engineering, domain specific-languages (DSL) provide tailored notations towards a specific problem domain to represent its different concepts. Multiple tools allow the definition of DSL by specifying the relations between a concept and its representations. Depending on the semantics of the domain, the language engineer can choose between textual or graphical notations. Graphical modeling languages require proper management of position, size, and layout to maximize their visual expressiveness. Most modeling editors lack automated support to manage these graphical concrete syntax properties. It is a time-consuming effort that affects the understandability of the model. Projectional editors prevent end-users from modifying the concrete syntax so they can focus on the modeling task. However, while they offer multiple notations, these editors lack support for graphical languages. During this thesis, we propose a new approach to design graphical and projectional editors. We created an extension of a web-oriented projectional editor, Gentleman, that allowed us to extract different requirements. During the thesis, we describe their impact on the projections and propose guidelines and examples of implementation. Because projectional editing requires specific management of the interaction, we present multiple approaches to interact with the graphical representations, using the new information available in the graphics. Since most of the requirements were focusing on the disposition of the projection, we define multiple simple layout algorithms that cover a large range of structures that can be found in a graphical editor. Finally, we explore the generation of three graphical and projectional editors for different domains: statecharts, sequence diagrams, and music sheet
    • …
    corecore