1,109 research outputs found

    Timetabling at High Schools

    Get PDF

    Solving Multiple Timetabling Problems at Danish High Schools

    Get PDF

    Development and implementation of a computer-aided method for planning resident shifts in a hospital

    Get PDF
    Ce mémoire propose une formulation pour le problème de confection d'horaire pour résidents, un problème peu étudiée dans la litérature. Les services hospitaliers mentionnés dans ce mémoire sont le service de pédiatrie du CHUL (Centre Hospitalier de l'Université Laval) et le service des urgences de l'Hôpital Enfant-Jésus à Québec. La contribution principale de ce mémoîre est la proposition d'un cadre d'analyse pour l’analyse de techniques manuelles utilisées dans des problèmes de confection d'horaires, souvent décrits comme des problèmes d'optimisation très complexes. Nous montrons qu'il est possible d'utiliser des techniques manuelles pour établir un ensemble réduit de contraintes sur lequel la recherche d’optimisation va se focaliser. Les techniques utilisées peuvent varier d’un horaire à l’autre et vont déterminer la qualité finale de l’horaire. La qualité d’un horaire est influencée par les choix qu’un planificateur fait dans l’utilisation de techniques spécifiques; cette technique reflète alors la perception du planificateur de la notion qualité de l’horaire. Le cadre d’analyse montre qu'un planificateur est capable de sélectionner un ensemble réduit de contraintes, lui permettant d’obtenir des horaires de très bonne qualité. Le fait que l'approche du planificateur est efficace devient clair lorsque ses horaires sont comparés aux solutions heuristiques. Pour ce faire, nous avons transposées les techniques manuelles en un algorithme afin de comparer les résultats avec les solutions manuelles. Mots clés: Confection d’horaires, Confection d’horaires pour résidents, Creation manuelle d’horaires, Heuristiques de confection d’horaires, Méthodes de recherche localeThis thesis provides a problem formulation for the resident scheduling problem, a problem on which very little research has been done. The hospital departments mentioned in this thesis are the paediatrics department of the CHUL (Centre Hospitalier de l’Université Laval) and the emergency department of the Hôpital Enfant-Jésus in Québec City. The main contribution of this thesis is the proposal of a framework for the analysis of manual techniques used in scheduling problems, often described as highly constrained optimisation problems. We show that it is possible to use manual scheduling techniques to establish a reduced set of constraints to focus the search on. The techniques used can differ from one schedule type to another and will determine the quality of the final solution. Since a scheduler manually makes the schedule, the techniques used reflect the scheduler’s notion of schedule quality. The framework shows that a scheduler is capable of selecting a reduced set of constraints, producing manual schedules that often are of very high quality. The fact that a scheduler’s approach is efficient becomes clear when his schedules are compared to heuristics solutions. We therefore translated the manual techniques into an algorithm so that the scheduler’s notion of schedule quality was used for the local search and show the results that were obtained. Key words: Timetable scheduling, Resident scheduling, Manual scheduling, Heuristic schedule generation, Local search method

    Intelligent maintenance management in a reconfigurable manufacturing environment using multi-agent systems

    Get PDF
    Thesis (M. Tech.) -- Central University of Technology, Free State, 2010Traditional corrective maintenance is both costly and ineffective. In some situations it is more cost effective to replace a device than to maintain it; however it is far more likely that the cost of the device far outweighs the cost of performing routine maintenance. These device related costs coupled with the profit loss due to reduced production levels, makes this reactive maintenance approach unacceptably inefficient in many situations. Blind predictive maintenance without considering the actual physical state of the hardware is an improvement, but is still far from ideal. Simply maintaining devices on a schedule without taking into account the operational hours and workload can be a costly mistake. The inefficiencies associated with these approaches have contributed to the development of proactive maintenance strategies. These approaches take the device health state into account. For this reason, proactive maintenance strategies are inherently more efficient compared to the aforementioned traditional approaches. Predicting the health degradation of devices allows for easier anticipation of the required maintenance resources and costs. Maintenance can also be scheduled to accommodate production needs. This work represents the design and simulation of an intelligent maintenance management system that incorporates device health prognosis with maintenance schedule generation. The simulation scenario provided prognostic data to be used to schedule devices for maintenance. A production rule engine was provided with a feasible starting schedule. This schedule was then improved and the process was determined by adhering to a set of criteria. Benchmarks were conducted to show the benefit of optimising the starting schedule and the results were presented as proof. Improving on existing maintenance approaches will result in several benefits for an organisation. Eliminating the need to address unexpected failures or perform maintenance prematurely will ensure that the relevant resources are available when they are required. This will in turn reduce the expenditure related to wasted maintenance resources without compromising the health of devices or systems in the organisation

    A Multi-Agent System for Course Timetable Generation

    Get PDF
    In the university, course scheduling and preparation for each semester can be defined as the process of determining what courses to offer, the number of sections needed for each course, assigning of a faculty member to teach each section, and allocating a timeslot and a classroom for each section to avoid clashes. The output of this activity (which is a timetable) affects every faculty member and student in various departments. This process is essentially broken down into three main stages: determining the courses to be offered as well as their section numbers, assigning faculty members to different sections, and scheduling of the sections into timeslots and classrooms. This paper investigates each of these steps and congregates them in a scheduling and Decision Support System (DSS). The DSS is used to make easy the process of course offerings by taking into consideration the students’ suggestions because the department resources are limited. The faculty member preferences are also considered in the assignment of sections for the sake of lessening disappointments in the department. Also, the couples (faculty, section) are planned into university timeslots based on faculty member preferences. Our proposed system considers student suggestions and preferences and the time availability of a faculty member since it minimizes disappointments and avoids conflicts between faculty members and classrooms and courses

    General timetabling system for school

    Get PDF
    The General Timetabling System for School is developed based on the local school timetable structure. The system is implemented using a heuristic generic algorithm that best fit to the timetabling solution. The system is designed on the principle of providing a user-friendly interface for the beginner to learn and use the system with ease. Result of the system testing shown that the system development objectives are successfully achieved. However, there are some limitations on the programming language and database management basis that are still looking for better solution. Additionally, possible future works to improve the usability of the system had also been identified and discussed

    Dynamic allocation of operators in a hybrid human-machine 4.0 context

    Get PDF
    La transformation numérique et le mouvement « industrie 4.0 » reposent sur des concepts tels que l'intégration et l'interconnexion des systèmes utilisant des données en temps réel. Dans le secteur manufacturier, un nouveau paradigme d'allocation dynamique des ressources humaines devient alors possible. Plutôt qu'une allocation statique des opérateurs aux machines, nous proposons d'affecter directement les opérateurs aux différentes tâches qui nécessitent encore une intervention humaine dans une usine majoritairement automatisée. Nous montrons les avantages de ce nouveau paradigme avec des expériences réalisées à l'aide d'un modèle de simulation à événements discrets. Un modèle d'optimisation qui utilise des données industrielles en temps réel et produit une allocation optimale des tâches est également développé. Nous montrons que l'allocation dynamique des ressources humaines est plus performante qu'une allocation statique. L'allocation dynamique permet une augmentation de 30% de la quantité de pièces produites durant une semaine de production. De plus, le modèle d'optimisation utilisé dans le cadre de l'approche d'allocation dynamique mène à des plans de production horaire qui réduisent les retards de production causés par les opérateurs de 76 % par rapport à l'approche d'allocation statique. Le design d'un système pour l'implantation de ce projet de nature 4.0 utilisant des données en temps réel dans le secteur manufacturier est proposé.The Industry 4.0 movement is based on concepts such as the integration and interconnexion of systems using real-time data. In the manufacturing sector, a new dynamic allocation paradigm of human resources then becomes possible. Instead of a static allocation of operators to machines, we propose to allocate the operators directly to the different tasks that still require human intervention in a mostly automated factory. We show the benefits of this new paradigm with experiments performed on a discrete-event simulation model based on an industrial partner's system. An optimization model that uses real-time industrial data and produces an optimal task allocation plan that can be used in real time is also developed. We show that the dynamic allocation of human resources outperforms a static allocation, even with standard operator training levels. With discrete-event simulation, we show that dynamic allocation leads to a 30% increase in the quantity of parts produced. Additionally, the optimization model used under the dynamic allocation approach produces hourly production plans that decrease production delays caused by human operators by up to 76% compared to the static allocation approach. An implementation system for this 4.0 project using real-time data in the manufacturing sector is furthermore proposed

    PENJADWALAN MATAKULIAH DENGAN MENGGUNAKAN ALGORITMA GENETIKA DAN METODE CONSTRAINT SATISFACTION

    Get PDF
    Course scheduling problem has gained attention from many researchers. A number of methods have been produced to get optimum schedule. Classical definition of course scheduling cannot fulfill the special needs of lecture scheduling in universities, therefore several additional rules have to be added to this problem. Lecture scheduling is computationally NP-hard problem, therefore a number of researches apply heuristic methods to do automation to this problem. This research applied Genetic Algorithm combined with Constraint Satisfaction Problem, with chromosomes generated by Genetic Algorithm processed by Constraint Satisfaction Problem. By using this combination, constraints in lecture scheduling that must be fulfilled can be guaranteed not violated. This will make heuristic process in Genetic Algorithm focused and make the entire process more efficient. The case study is the case in Informatics Department, Faculty of Information Technology, ITS. From the analysis of testing results, it is concluded that the system can handle specific requested time slot for a lecture, that the system can process all the offered lectures, and that the system can produce schedules without violating the given constraints. It is also seen that Genetic Algorithm in the system has done optimation in finding the minimum student waiting time between lectures

    Efficiency and Robustness in Railway Operations

    Get PDF
    • …
    corecore