2,406 research outputs found

    A Visual Dashboard to Track Learning Analytics for Educational Cloud Computing

    Full text link
    [EN] Cloud providers such as Amazon Web Services (AWS) stand out as useful platforms to teach distributed computing concepts as well as the development of Cloud-native scalable application architectures on real-world infrastructures. Instructors can benefit from high-level tools to track the progress of students during their learning paths on the Cloud, and this information can be disclosed via educational dashboards for students to understand their progress through the practical activities. To this aim, this paper introduces CloudTrail-Tracker, an open-source platform to obtain enhanced usage analytics from a shared AWS account. The tool provides the instructor with a visual dashboard that depicts the aggregated usage of resources by all the students during a certain time frame and the specific use of AWS for a specific student. To facilitate self-regulation of students, the dashboard also depicts the percentage of progress for each lab session and the pending actions by the student. The dashboard has been integrated in four Cloud subjects that use different learning methodologies (from face-to-face to online learning) and the students positively highlight the usefulness of the tool for Cloud instruction in AWS. This automated procurement of evidences of student activity on the Cloud results in close to real-time learning analytics useful both for semi-automated assessment and student self-awareness of their own training progress.This research was funded by the Spanish Ministerio de Economia, Industria y Competitividad, grant number TIN2016-79951-R (BigCLOE) and by the Vicerrectorado de Estudios, Calidad y Acreditacion of the Universitat Politecnica de Valencia (UPV) to develop the PIME B29.Naranjo, DM.; Prieto, JR.; Moltó, G.; Calatrava Arroyo, A. (2019). A Visual Dashboard to Track Learning Analytics for Educational Cloud Computing. Sensors. 19(13):1-15. https://doi.org/10.3390/s19132952S1151913Porter, W. W., Graham, C. R., Spring, K. A., & Welch, K. R. (2014). Blended learning in higher education: Institutional adoption and implementation. Computers & Education, 75, 185-195. doi:10.1016/j.compedu.2014.02.011Thai, N. T. T., De Wever, B., & Valcke, M. (2017). The impact of a flipped classroom design on learning performance in higher education: Looking for the best «blend» of lectures and guiding questions with feedback. Computers & Education, 107, 113-126. doi:10.1016/j.compedu.2017.01.003Chen, Y., Wang, Y., Kinshuk, & Chen, N.-S. (2014). Is FLIP enough? Or should we use the FLIPPED model instead? Computers & Education, 79, 16-27. doi:10.1016/j.compedu.2014.07.004Baepler, P., Walker, J. D., & Driessen, M. (2014). It’s not about seat time: Blending, flipping, and efficiency in active learning classrooms. Computers & Education, 78, 227-236. doi:10.1016/j.compedu.2014.06.006Molto, G., & Caballer, M. (2014). On using the cloud to support online courses. 2014 IEEE Frontiers in Education Conference (FIE) Proceedings. doi:10.1109/fie.2014.7044041González-Martínez, J. A., Bote-Lorenzo, M. L., Gómez-Sánchez, E., & Cano-Parra, R. (2015). Cloud computing and education: A state-of-the-art survey. Computers & Education, 80, 132-151. doi:10.1016/j.compedu.2014.08.017AWS Cloudtrailhttps://aws.amazon.com/cloudtrail/?nc1=h_lsFerguson, R. (2012). Learning analytics: drivers, developments and challenges. International Journal of Technology Enhanced Learning, 4(5/6), 304. doi:10.1504/ijtel.2012.051816Schwendimann, B. A., Rodriguez-Triana, M. J., Vozniuk, A., Prieto, L. P., Boroujeni, M. S., Holzer, A., … Dillenbourg, P. (2017). Perceiving Learning at a Glance: A Systematic Literature Review of Learning Dashboard Research. IEEE Transactions on Learning Technologies, 10(1), 30-41. doi:10.1109/tlt.2016.2599522Sedrakyan, G., Malmberg, J., Verbert, K., Järvelä, S., & Kirschner, P. A. (2020). Linking learning behavior analytics and learning science concepts: Designing a learning analytics dashboard for feedback to support learning regulation. Computers in Human Behavior, 107, 105512. doi:10.1016/j.chb.2018.05.004Tabaa, Y., & Medouri, A. (2013). LASyM: A Learning Analytics System for MOOCs. International Journal of Advanced Computer Science and Applications, 4(5). doi:10.14569/ijacsa.2013.040516Verbert, K., Govaerts, S., Duval, E., Santos, J. L., Van Assche, F., Parra, G., & Klerkx, J. (2013). Learning dashboards: an overview and future research opportunities. Personal and Ubiquitous Computing. doi:10.1007/s00779-013-0751-2Arnold, K. E., & Pistilli, M. D. (2012). Course signals at Purdue. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge - LAK ’12. doi:10.1145/2330601.2330666Ali, L., Hatala, M., Gašević, D., & Jovanović, J. (2012). A qualitative evaluation of evolution of a learning analytics tool. Computers & Education, 58(1), 470-489. doi:10.1016/j.compedu.2011.08.030Leony, D., Pardo, A., de la Fuente Valentín, L., de Castro, D. S., & Kloos, C. D. (2012). GLASS. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge - LAK ’12. doi:10.1145/2330601.2330642Vieira, C., Parsons, P., & Byrd, V. (2018). Visual learning analytics of educational data: A systematic literature review and research agenda. Computers & Education, 122, 119-135. doi:10.1016/j.compedu.2018.03.018Jivet, I., Scheffel, M., Specht, M., & Drachsler, H. (2018). License to evaluate. Proceedings of the 8th International Conference on Learning Analytics and Knowledge. doi:10.1145/3170358.3170421Amazon CloudWatchhttps://aws.amazon.com/cloudwatch/?nc1=h_lsSpectrumhttps://spectrumapp.io/Opsview Monitorhttps://www.opsview.com/SignalFxhttps://signalfx.com/AWS Cloud Monitoringhttps://www.solarwinds.com/topics/aws-monitoringLonn, S., Aguilar, S. J., & Teasley, S. D. (2015). Investigating student motivation in the context of a learning analytics intervention during a summer bridge program. Computers in Human Behavior, 47, 90-97. doi:10.1016/j.chb.2014.07.013Pintrich, P. R. (2004). A Conceptual Framework for Assessing Motivation and Self-Regulated Learning in College Students. Educational Psychology Review, 16(4), 385-407. doi:10.1007/s10648-004-0006-xButler, D. L., & Winne, P. H. (1995). Feedback and Self-Regulated Learning: A Theoretical Synthesis. Review of Educational Research, 65(3), 245-281. doi:10.3102/00346543065003245Knight, S., Buckingham Shum, S., & Littleton, K. (2014). Epistemology, Assessment, Pedagogy: Where Learning Meets Analytics in the Middle Space. Journal of Learning Analytics, 1(2). doi:10.18608/jla.2014.12.3Jivet, I., Scheffel, M., Drachsler, H., & Specht, M. (2017). Awareness Is Not Enough: Pitfalls of Learning Analytics Dashboards in the Educational Practice. Lecture Notes in Computer Science, 82-96. doi:10.1007/978-3-319-66610-5_

    A Systematic Review of Teacher-Facing Dashboards for Collaborative Learning Activities and Tools in Online Higher Education

    Get PDF
    Dashboard for online higher education support monitoring and evaluation of students’ interactions, but mostly limited to interaction occurring within learning management systems. In this study, we sought to find which collaborative learning activities and tools in online higher education are included in teaching dashboards. By following Kitchenham’s procedure for systematic reviews, 36 papers were identified according to this focus and analysed. The results identify dashboards supporting collaborative tools, both synchronous and asynchronous, along categories such as learning management systems, communication tools, social media, computer programming code management platforms, project management platforms, and collaborative writing tools. Dashboard support was also found for collaborative activities, grouped under four categories of forum discussion activities, three categories of communication activities and four categories of collaborative editing/sharing activities, though most of the analysed dashboards only provide support for no more than two or three collaborative tools. This represents a need for further research on how to develop dashboards that combine data from a more diverse set of collaborative activities and tools.This work was supported by the TRIO project funded by the European Union’s Erasmus+ KA220-ADU – Cooperation partnerships in adult education programme under grant agreement no. KA220-ADU-1B9975F8.info:eu-repo/semantics/publishedVersio

    Design Analytics Dashboards to Support Students and Instructors

    Get PDF
    Design coursework is iterative and continuously-evolving. Separation of digital tools used in design courses disaffects instructors’ and students’ iterative process experiences. As technology becomes increasingly integrated into design education, new opportunities arise for supporting the iterative, living process of design. These opportunities include providing on-demand, automatically computed insights to instructors, and facilitating instructor and student communication of feedback. I present a system that integrates support for design ideation with a learning analytics dashboard. The system enables instructors gain insights into a student's work across multiple dimensions. Instructors can view design work in the same environment in which students create it, which allows them to provide assessment and feedback in-context. I conducted semi-structured interviews, and recorded interaction logs over the course of an academic year to understand users' experiences. My research contributes to our understanding of how to present interactive, on-demand insights to instructors, as well as how to facilitate communication in an iterative process between instructors and students. Findings indicate benefits when systems enable instructors to contextualize creative work with assessment by integrating support for ideation with a learning analytics dashboard. Instructors are better able to track students and their work. Students are supported in reflecting on the relationship between assignments, and contextualizing instructor feedback with their work. We derive implications for contextualizing design with feedback to support creativity, learning, and teaching

    eduGraph: A Dashboard for Personalised Feedback in Massive Open Online Courses

    Get PDF
    Learning Analytics is concerned with the design and implementation of tools and processes for collecting, analysing, and communicating information about teaching and learning. It is enabled by data, but not driven by it, rather it tries to empower human judgements by presenting meaningful facts. This thesis explores the data generated in Open edX courses to understand how it can be analysed and used to impact learners' motivation in online courses. It is carried out using Design Science, a research methodology aiming to produce artefacts that can improve the interaction with problems. In this thesis I present the eduGraph dashboard, a dashboard that uses Learning Analytics to present meaningful insights about learners' learning process in Massive Open Online Courses (MOOCs). Results indicate that learners perceive the dashboard as useful and effective at motivating them to take part in online courses, and that it enables them to keep track of their progress in the courses. I posit that the biggest problem facing Learning Analytics today are the lack of accessible data, and that it is possible for reasearchers to create more accurate learner models by using Learning Anaytics theories and methods in combination with the iterative and technical process of Information Systems development.Masteroppgave i informasjonsvitenskapINFO390MASV-INF

    Insights from Learning Analytics for Hands-On Cloud Computing Labs in AWS

    Get PDF
    [EN] Cloud computing instruction requires hands-on experience with a myriad of distributed computing services from a public cloud provider. Tracking the progress of the students, especially for online courses, requires one to automatically gather evidence and produce learning analytics in order to further determine the behavior and performance of students. With this aim, this paper describes the experience from an online course in cloud computing with Amazon Web Services on the creation of an open-source data processing tool to systematically obtain learning analytics related to the hands-on activities carried out throughout the course. These data, combined with the data obtained from the learning management system, have allowed the better characterization of the behavior of students in the course. Insights from a population of more than 420 online students through three academic years have been assessed, the dataset has been released for increased reproducibility. The results corroborate that course length has an impact on online students dropout. In addition, a gender analysis pointed out that there are no statistically significant differences in the final marks between genders, but women show an increased degree of commitment with the activities planned in the course.This research was funded by the Spanish "Ministerio de Economia, Industria y Competitividad through grant number TIN2016-79951-R (BigCLOE)", the "Vicerrectorado de Estudios, Calidad y Acreditacion" of the Universitat Politecnica de Valencia (UPV) to develop the PIME B29 and PIME/19-20/166, and by the Conselleria d'Innovacio, Universitat, Ciencia i Societat Digital for the project "CloudSTEM" with reference number AICO/2019/313.Moltó, G.; Naranjo-Delgado, DM.; Segrelles Quilis, JD. (2020). Insights from Learning Analytics for Hands-On Cloud Computing Labs in AWS. Applied Sciences. 10(24):1-13. https://doi.org/10.3390/app10249148S1131024Motiwalla, L., Deokar, A. V., Sarnikar, S., & Dimoka, A. (2019). Leveraging Data Analytics for Behavioral Research. Information Systems Frontiers, 21(4), 735-742. doi:10.1007/s10796-019-09928-8Siemens, G., & Baker, R. S. J. d. (2012). Learning analytics and educational data mining. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge - LAK ’12. doi:10.1145/2330601.2330661Blikstein, P. (2013). Multimodal learning analytics. Proceedings of the Third International Conference on Learning Analytics and Knowledge - LAK ’13. doi:10.1145/2460296.2460316Hewson, E. R. F. (2018). Students’ Emotional Engagement, Motivation and Behaviour Over the Life of an Online Course: Reflections on Two Market Research Case Studies. Journal of Interactive Media in Education, 2018(1). doi:10.5334/jime.472Kahan, T., Soffer, T., & Nachmias, R. (2017). Types of Participant Behavior in a Massive Open Online Course. The International Review of Research in Open and Distributed Learning, 18(6). doi:10.19173/irrodl.v18i6.3087Cross, S., & Whitelock, D. (2016). Similarity and difference in fee-paying and no-fee learner expectations, interaction and reaction to learning in a massive open online course. Interactive Learning Environments, 25(4), 439-451. doi:10.1080/10494820.2016.1138312Charleer, S., Klerkx, J., & Duval, E. (2014). Learning Dashboards. Journal of Learning Analytics, 1(3), 199-202. doi:10.18608/jla.2014.13.22Worsley, M. (2012). Multimodal learning analytics. Proceedings of the 14th ACM international conference on Multimodal interaction - ICMI ’12. doi:10.1145/2388676.2388755Spikol, D., Prieto, L. P., Rodríguez-Triana, M. J., Worsley, M., Ochoa, X., Cukurova, M., … Ringtved, U. L. (2017). Current and future multimodal learning analytics data challenges. Proceedings of the Seventh International Learning Analytics & Knowledge Conference. doi:10.1145/3027385.3029437Ochoa, X., Worsley, M., Weibel, N., & Oviatt, S. (2016). Multimodal learning analytics data challenges. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge - LAK ’16. doi:10.1145/2883851.2883913Aguilar, J., Sánchez, M., Cordero, J., Valdiviezo-Díaz, P., Barba-Guamán, L., & Chamba-Eras, L. (2017). Learning analytics tasks as services in smart classrooms. Universal Access in the Information Society, 17(4), 693-709. doi:10.1007/s10209-017-0525-0Lu, O. H. T., Huang, J. C. H., Huang, A. Y. Q., & Yang, S. J. H. (2017). Applying learning analytics for improving students engagement and learning outcomes in an MOOCs enabled collaborative programming course. Interactive Learning Environments, 25(2), 220-234. doi:10.1080/10494820.2016.1278391Drachsler, H., & Kalz, M. (2016). The MOOC and learning analytics innovation cycle (MOLAC): a reflective summary of ongoing research and its challenges. Journal of Computer Assisted Learning, 32(3), 281-290. doi:10.1111/jcal.12135Ruiperez-Valiente, J. A., Munoz-Merino, P. J., Gascon-Pinedo, J. A., & Kloos, C. D. (2017). Scaling to Massiveness With ANALYSE: A Learning Analytics Tool for Open edX. IEEE Transactions on Human-Machine Systems, 47(6), 909-914. doi:10.1109/thms.2016.2630420Er, E., Gómez-Sánchez, E., Dimitriadis, Y., Bote-Lorenzo, M. L., Asensio-Pérez, J. I., & Álvarez-Álvarez, S. (2019). Aligning learning design and learning analytics through instructor involvement: a MOOC case study. Interactive Learning Environments, 27(5-6), 685-698. doi:10.1080/10494820.2019.1610455Tabaa, Y., & Medouri, A. (2013). LASyM: A Learning Analytics System for MOOCs. International Journal of Advanced Computer Science and Applications, 4(5). doi:10.14569/ijacsa.2013.040516Shorfuzzaman, M., Hossain, M. S., Nazir, A., Muhammad, G., & Alamri, A. (2019). Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment. Computers in Human Behavior, 92, 578-588. doi:10.1016/j.chb.2018.07.002Klašnja-Milićević, A., Ivanović, M., & Budimac, Z. (2017). Data science in education: Big data and learning analytics. Computer Applications in Engineering Education, 25(6), 1066-1078. doi:10.1002/cae.21844Logglyhttps://www.loggly.com/Molto, G., & Caballer, M. (2014). On using the cloud to support online courses. 2014 IEEE Frontiers in Education Conference (FIE) Proceedings. doi:10.1109/fie.2014.7044041Caballer, M., Blanquer, I., Moltó, G., & de Alfonso, C. (2014). Dynamic Management of Virtual Infrastructures. Journal of Grid Computing, 13(1), 53-70. doi:10.1007/s10723-014-9296-5AWS CloudTrailhttps://aws.amazon.com/cloudtrail/Amazon Simple Storage Service (Amazon S3)http://aws.amazon.com/s3/Naranjo, D. M., Prieto, J. R., Moltó, G., & Calatrava, A. (2019). A Visual Dashboard to Track Learning Analytics for Educational Cloud Computing. Sensors, 19(13), 2952. doi:10.3390/s19132952Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., … Suter, P. (2017). Serverless Computing: Current Trends and Open Problems. Research Advances in Cloud Computing, 1-20. doi:10.1007/978-981-10-5026-8_1Zimmerman, D. W. (1987). Comparative Power of StudentTTest and Mann-WhitneyUTest for Unequal Sample Sizes and Variances. The Journal of Experimental Education, 55(3), 171-174. doi:10.1080/00220973.1987.10806451Kruskal, W. H., & Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47(260), 583-621. doi:10.1080/01621459.1952.10483441Voyer, D., & Voyer, S. D. (2014). Gender differences in scholastic achievement: A meta-analysis. Psychological Bulletin, 140(4), 1174-1204. doi:10.1037/a0036620Ellemers, N., Heuvel, H., Gilder, D., Maass, A., & Bonvini, A. (2004). The underrepresentation of women in science: Differential commitment or the queen bee syndrome? British Journal of Social Psychology, 43(3), 315-338. doi:10.1348/0144666042037999Sheard, M. (2009). Hardiness commitment, gender, and age differentiate university academic performance. British Journal of Educational Psychology, 79(1), 189-204. doi:10.1348/000709908x30440

    Serverless Computing Strategies on Cloud Platforms

    Full text link
    [ES] Con el desarrollo de la Computación en la Nube, la entrega de recursos virtualizados a través de Internet ha crecido enormemente en los últimos años. Las Funciones como servicio (FaaS), uno de los modelos de servicio más nuevos dentro de la Computación en la Nube, permite el desarrollo e implementación de aplicaciones basadas en eventos que cubren servicios administrados en Nubes públicas y locales. Los proveedores públicos de Computación en la Nube adoptan el modelo FaaS dentro de su catálogo para proporcionar computación basada en eventos altamente escalable para las aplicaciones. Por un lado, los desarrolladores especializados en esta tecnología se centran en crear marcos de código abierto serverless para evitar el bloqueo con los proveedores de la Nube pública. A pesar del desarrollo logrado por la informática serverless, actualmente hay campos relacionados con el procesamiento de datos y la optimización del rendimiento en la ejecución en los que no se ha explorado todo el potencial. En esta tesis doctoral se definen tres estrategias de computación serverless que permiten evidenciar los beneficios de esta tecnología para el procesamiento de datos. Las estrategias implementadas permiten el análisis de datos con la integración de dispositivos de aceleración para la ejecución eficiente de aplicaciones científicas en plataformas cloud públicas y locales. En primer lugar, se desarrolló la plataforma CloudTrail-Tracker. CloudTrail-Tracker es una plataforma serverless de código abierto basada en eventos para el procesamiento de datos que puede escalar automáticamente hacia arriba y hacia abajo, con la capacidad de escalar a cero para minimizar los costos operativos. Seguidamente, se plantea la integración de GPUs en una plataforma serverless local impulsada por eventos para el procesamiento de datos escalables. La plataforma admite la ejecución de aplicaciones como funciones severless en respuesta a la carga de un archivo en un sistema de almacenamiento de ficheros, lo que permite la ejecución en paralelo de las aplicaciones según los recursos disponibles. Este procesamiento es administrado por un cluster Kubernetes elástico que crece y decrece automáticamente según las necesidades de procesamiento. Ciertos enfoques basados en tecnologías de virtualización de GPU como rCUDA y NVIDIA-Docker se evalúan para acelerar el tiempo de ejecución de las funciones. Finalmente, se implementa otra solución basada en el modelo serverless para ejecutar la fase de inferencia de modelos de aprendizaje automático previamente entrenados, en la plataforma de Amazon Web Services y en una plataforma privada con el framework OSCAR. El sistema crece elásticamente de acuerdo con la demanda y presenta una escalado a cero para minimizar los costes. Por otra parte, el front-end proporciona al usuario una experiencia simplificada en la obtención de la predicción de modelos de aprendizaje automático. Para demostrar las funcionalidades y ventajas de las soluciones propuestas durante esta tesis se recogen varios casos de estudio que abarcan diferentes campos del conocimiento como la analítica de aprendizaje y la Inteligencia Artificial. Esto demuestra que la gama de aplicaciones donde la computación serverless puede aportar grandes beneficios es muy amplia. Los resultados obtenidos avalan el uso del modelo serverless en la simplificación del diseño de arquitecturas para el uso intensivo de datos en aplicaciones complejas.[CA] Amb el desenvolupament de la Computació en el Núvol, el lliurament de recursos virtualitzats a través d'Internet ha crescut granment en els últims anys. Les Funcions com a Servei (FaaS), un dels models de servei més nous dins de la Computació en el Núvol, permet el desenvolupament i implementació d'aplicacions basades en esdeveniments que cobreixen serveis administrats en Núvols públics i locals. Els proveïdors de computació en el Núvol públic adopten el model FaaS dins del seu catàleg per a proporcionar a les aplicacions computació altament escalable basada en esdeveniments. D'una banda, els desenvolupadors especialitzats en aquesta tecnologia se centren en crear marcs de codi obert serverless per a evitar el bloqueig amb els proveïdors del Núvol públic. Malgrat el desenvolupament alcançat per la informàtica serverless, actualment hi ha camps relacionats amb el processament de dades i l'optimització del rendiment d'execució en els quals no s'ha explorat tot el potencial. En aquesta tesi doctoral es defineixen tres estratègies informàtiques serverless que permeten demostrar els beneficis d'aquesta tecnologia per al processament de dades. Les estratègies implementades permeten l'anàlisi de dades amb a integració de dispositius accelerats per a l'execució eficient d'aplicacion scientífiques en plataformes de Núvol públiques i locals. En primer lloc, es va desenvolupar la plataforma CloudTrail-Tracker. CloudTrail-Tracker és una plataforma de codi obert basada en esdeveniments per al processament de dades serverless que pot escalar automáticament cap amunt i cap avall, amb la capacitat d'escalar a zero per a minimitzar els costos operatius. A continuació es planteja la integració de GPUs en una plataforma serverless local impulsada per esdeveniments per al processament de dades escalables. La plataforma admet l'execució d'aplicacions com funcions severless en resposta a la càrrega d'un arxiu en un sistema d'emmagatzemaments de fitxers, la qual cosa permet l'execució en paral·lel de les aplicacions segon sels recursos disponibles. Este processament és administrat per un cluster Kubernetes elàstic que creix i decreix automàticament segons les necessitats de processament. Certs enfocaments basats en tecnologies de virtualització de GPU com rCUDA i NVIDIA-Docker s'avaluen per a accelerar el temps d'execució de les funcions. Finalment s'implementa una altra solució basada en el model serverless per a executar la fase d'inferència de models d'aprenentatge automàtic prèviament entrenats en la plataforma de Amazon Web Services i en una plataforma privada amb el framework OSCAR. El sistema creix elàsticament d'acord amb la demanda i presenta una escalada a zero per a minimitzar els costos. D'altra banda el front-end proporciona a l'usuari una experiència simplificada en l'obtenció de la predicció de models d'aprenentatge automàtic. Per a demostrar les funcionalitats i avantatges de les solucions proposades durant esta tesi s'arrepleguen diversos casos d'estudi que comprenen diferents camps del coneixement com l'analítica d'aprenentatge i la Intel·ligència Artificial. Això demostra que la gamma d'aplicacions on la computació serverless pot aportar grans beneficis és molt àmplia. Els resultats obtinguts avalen l'ús del model serverless en la simplificació del disseny d'arquitectures per a l'ús intensiu de dades en aplicacions complexes.[EN] With the development of Cloud Computing, the delivery of virtualized resources over the Internet has greatly grown in recent years. Functions as a Service (FaaS), one of the newest service models within Cloud Computing, allows the development and implementation of event-based applications that cover managed services in public and on-premises Clouds. Public Cloud Computing providers adopt the FaaS model within their catalog to provide event-driven highly-scalable computing for applications. On the one hand, developers specialized in this technology focus on creating open-source serverless frameworks to avoid the lock-in with public Cloud providers. Despite the development achieved by serverless computing, there are currently fields related to data processing and execution performance optimization where the full potential has not been explored. In this doctoral thesis three serverless computing strategies are defined that allow to demonstrate the benefits of this technology for data processing. The implemented strategies allow the analysis of data with the integration of accelerated devices for the efficient execution of scientific applications on public and on-premises Cloud platforms. Firstly, the CloudTrail-Tracker platform was developed to extract and process learning analytics in the Cloud. CloudTrail-Tracker is an event-driven open-source platform for serverless data processing that can automatically scale up and down, featuring the ability to scale to zero for minimizing the operational costs. Next, the integration of GPUs in an event-driven on-premises serverless platform for scalable data processing is discussed. The platform supports the execution of applications as serverless functions in response to the loading of a file in a file storage system, which allows the parallel execution of applications according to available resources. This processing is managed by an elastic Kubernetes cluster that automatically grows and shrinks according to the processing needs. Certain approaches based on GPU virtualization technologies such as rCUDA and NVIDIA-Docker are evaluated to speed up the execution time of the functions. Finally, another solution based on the serverless model is implemented to run the inference phase of previously trained machine learning models on theAmazon Web Services platform and in a private platform with the OSCAR framework. The system grows elastically according to demand and is scaled to zero to minimize costs. On the other hand, the front-end provides the user with a simplified experience in obtaining the prediction of machine learning models. To demonstrate the functionalities and advantages of the solutions proposed during this thesis, several case studies are collected covering different fields of knowledge such as learning analytics and Artificial Intelligence. This shows the wide range of applications where serverless computing can bring great benefits. The results obtained endorse the use of the serverless model in simplifying the design of architectures for the intensive data processing in complex applications.Naranjo Delgado, DM. (2021). Serverless Computing Strategies on Cloud Platforms [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/160916TESI

    Educational Data Analytics for Teachers and School Leaders

    Get PDF
    Educational Data Analytics (EDA) have been attributed with significant benefits for enhancing on-demand personalized educational support of individual learners as well as reflective course (re)design for achieving more authentic teaching, learning and assessment experiences integrated into real work-oriented tasks. This open access textbook is a tutorial for developing, practicing and self-assessing core competences on educational data analytics for digital teaching and learning. It combines theoretical knowledge on core issues related to collecting, analyzing, interpreting and using educational data, including ethics and privacy concerns. The textbook provides questions and teaching materials/ learning activities as quiz tests of multiple types of questions, added after each section, related to the topic studied or the video(s) referenced. These activities reproduce real-life contexts by using a suitable use case scenario (storytelling), encouraging learners to link theory with practice; self-assessed assignments enabling learners to apply their attained knowledge and acquired competences on EDL. By studying this book, you will know where to locate useful educational data in different sources and understand their limitations; know the basics for managing educational data to make them useful; understand relevant methods; and be able to use relevant tools; know the basics for organising, analysing, interpreting and presenting learner-generated data within their learning context, understand relevant learning analytics methods and be able to use relevant learning analytics tools; know the basics for analysing and interpreting educational data to facilitate educational decision making, including course and curricula design, understand relevant teaching analytics methods and be able to use relevant teaching analytics tools; understand issues related with educational data ethics and privacy. This book is intended for school leaders and teachers engaged in blended (using the flipped classroom model) and online (during COVID-19 crisis and beyond) teaching and learning; e-learning professionals (such as, instructional designers and e-tutors) of online and blended courses; instructional technologists; researchers as well as undergraduate and postgraduate university students studying education, educational technology and relevant fields

    Conceptual Model of Visual Analytics for Hands-on Cybersecurity Training

    Get PDF
    Hands-on training is an effective way to practice theoretical cybersecurity concepts and increase participants’ skills. In this paper, we discuss the application of visual analytics principles to the design, execution, and evaluation of training sessions. We propose a conceptual model employing visual analytics that supports the sensemaking activities of users involved in various phases of the training life cycle. The model emerged from our long-term experience in designing and organizing diverse hands-on cybersecurity training sessions. It provides a classification of visualizations and can be used as a framework for developing novel visualization tools supporting phases of the training life-cycle. We demonstrate the model application on examples covering two types of cybersecurity training programs
    corecore