15 research outputs found

    Rotorigami: A rotary origami protective system for robotic rotorcraft

    Get PDF
    Applications of aerial robots are progressively expanding into complex urban and natural environments. Despite remarkable advancements in the field, robotic rotorcraft is still drastically limited by the environment in which they operate. Obstacle detection and avoidance systems have functionality limitations and substantially add to the computational complexity of the onboard equipment of flying vehicles. Furthermore, they often cannot identify difficult-to-detect obstacles such as windows and wires. Robustness to physical contact with the environment is essential to mitigate these limitations and continue mission completion. However, many current mechanical impact protection concepts are either not sufficiently effective or too heavy and cumbersome, severely limiting the flight time and the capability of flying in constrained and narrow spaces. Therefore, novel impact protection systems are needed to enable flying robots to navigate in confined or heavily cluttered environments easily, safely, and efficiently while minimizing the performance penalty caused by the protection method. Here, we report the development of a protection system for robotic rotorcraft consisting of a free-to-spin circular protector that is able to decouple impact yawing moments from the vehicle, combined with a cyclic origami impact cushion capable of reducing the peak impact force experienced by the vehicle. Experimental results using a sensor-equipped miniature quadrotor demonstrated the impact resilience effectiveness of the Rotary Origami Protective System (Rotorigami) for a variety of collision scenarios. We anticipate this work to be a starting point for the exploitation of origami structures in the passive or active impact protection of robotic vehicles

    A new mechanism for soft landing in robotic space exploration

    Get PDF
    Landing safely is the key to successful exploration of the solar system; the mitigation of the connected effects of collision in mechanical systems relies on the conversion of kinetic energy into heat or potential energy. An effective landing-system design should minimize the acceleration acting on the payload. In this paper, we focus on the application of a special class of nonlinear preloaded mechanisms, which take advantage of a variable radius drum (VRD) to produce a constant reactive force during deceleration. Static and dynamic models of the mechanism are presented. Numerical results show that the system allows for very efficient kinetic energy accumulation during impact, approaching the theoretical limit

    Experimental Characterization of the Structural Dynamics and Aero-Structural Sensitivity of a Hawkmoth Wing Toward the Development of Design Rules for Flapping Wing Micro Air Vehicles

    Get PDF
    A case is made for why the structures discipline must take on a more central role in the research and design of flapping-wing micro-air-vehicles, especially if research trends continue toward bio-inspired, insect-sized flexible wing designs. In making the case, the eigenstructure of the wing emerges as a key structural metric for consideration. But with virtually no structural dynamic data available for actual insect wings, both engineered and computational wing models that have been inspired by biological analogs have no structural truth models to which they can be anchored. An experimental framework is therefore developed herein for performing system identification testing on the wings of insects. This framework is then utilized to characterize the structural dynamics of the forewing of a large sample of hawkmoth (Manduca Sexta) for future design and research consideration. The research also weighs-in on a decade-long debate as to the relative contributions that the inertial and fluid dynamic forces acting on a flapping insect wing have on its deformation (expression) during flight. Ultimately the findings proves that both affect wing expression significantly, casting serious doubt on the longstanding and most frequently cited research that indicates fluid dynamic forces have minimal or negligible effect
    corecore