33,573 research outputs found

    Single sign-on and authorization for dynamic virtual organizations

    Get PDF
    The vision of the Grid is to support the dynamic establishment and subsequent management of virtual organizations (VO). To achieve this presents many challenges for the Grid community with perhaps the greatest one being security. Whilst Public Key Infrastructures (PKI) provide a form of single sign-on through recognition of trusted certification authorities, they have numerous limitations. The Internet2 Shibboleth architecture and protocols provide an enabling technology overcoming some of the issues with PKIs however Shibboleth too suffers from various limitations that make its application for dynamic VO establishment and management difficult. In this paper we explore the limitations of PKIs and Shibboleth and present an infrastructure that incorporates single sign-on with advanced authorization of federated security infrastructures and yet is seamless and targeted to the needs of end users. We explore this infrastructure through an educational case study at the National e-Science Centre (NeSC) at the University of Glasgow and Edinburgh

    Provenance-based trust for grid computing: Position Paper

    No full text
    Current evolutions of Internet technology such as Web Services, ebXML, peer-to-peer and Grid computing all point to the development of large-scale open networks of diverse computing systems interacting with one another to perform tasks. Grid systems (and Web Services) are exemplary in this respect and are perhaps some of the first large-scale open computing systems to see widespread use - making them an important testing ground for problems in trust management which are likely to arise. From this perspective, today's grid architectures suffer from limitations, such as lack of a mechanism to trace results and lack of infrastructure to build up trust networks. These are important concerns in open grids, in which "community resources" are owned and managed by multiple stakeholders, and are dynamically organised in virtual organisations. Provenance enables users to trace how a particular result has been arrived at by identifying the individual services and the aggregation of services that produced such a particular output. Against this background, we present a research agenda to design, conceive and implement an industrial-strength open provenance architecture for grid systems. We motivate its use with three complex grid applications, namely aerospace engineering, organ transplant management and bioinformatics. Industrial-strength provenance support includes a scalable and secure architecture, an open proposal for standardising the protocols and data structures, a set of tools for configuring and using the provenance architecture, an open source reference implementation, and a deployment and validation in industrial context. The provision of such facilities will enrich grid capabilities by including new functionalities required for solving complex problems such as provenance data to provide complete audit trails of process execution and third-party analysis and auditing. As a result, we anticipate that a larger uptake of grid technology is likely to occur, since unprecedented possibilities will be offered to users and will give them a competitive edge

    User oriented access to secure biomedical resources through the grid

    Get PDF
    The life science domain is typified by heterogeneous data sets that are evolving at an exponential rate. Numerous post-genomic databases and areas of post-genomic life science research have been established and are being actively explored. Whilst many of these databases are public and freely accessible, it is often the case that researchers have data that is not so freely available and access to this data needs to be strictly controlled when distributed collaborative research is undertaken. Grid technologies provide one mechanism by which access to and integration of federated data sets is possible. Combining such data access and integration technologies with fine grained security infrastructures facilitates the establishment of virtual organisations (VO). However experience has shown that the general research (non-Grid) community are not comfortable with the Grid and its associated security models based upon public key infrastructures (PKIs). The Internet2 Shibboleth technology helps to overcome this through users only having to log in to their home site to gain access to resources across a VO ā€“ or in Shibboleth terminology a federation. In this paper we outline how we have applied the combination of Grid technologies, advanced security infrastructures and the Internet2 Shibboleth technology in several biomedical projects to provide a user-oriented model for secure access to and usage of Grid resources. We believe that this model may well become the de facto mechanism for undertaking e-Research on the Grid across numerous domains including the life sciences

    Standardisation of Provenance Systems in Service Oriented Architectures --- White Paper

    No full text
    This White Paper presents provenance in computer systems as a mechanism by which business and e-science can undertake compliance validation and analysis of their past processes. We discuss an open approach that can bring benefits to application owners, IT providers, auditors and reviewers. In order to capitalise on such benefits, we make specific recommendations to move forward a standardisation activity in this domain
    • ā€¦
    corecore