175 research outputs found

    NASA Automated Rendezvous and Capture Review. Executive summary

    Get PDF
    In support of the Cargo Transfer Vehicle (CTV) Definition Studies in FY-92, the Advanced Program Development division of the Office of Space Flight at NASA Headquarters conducted an evaluation and review of the United States capabilities and state-of-the-art in Automated Rendezvous and Capture (AR&C). This review was held in Williamsburg, Virginia on 19-21 Nov. 1991 and included over 120 attendees from U.S. government organizations, industries, and universities. One hundred abstracts were submitted to the organizing committee for consideration. Forty-two were selected for presentation. The review was structured to include five technical sessions. Forty-two papers addressed topics in the five categories below: (1) hardware systems and components; (2) software systems; (3) integrated systems; (4) operations; and (5) supporting infrastructure

    End to End Satellite Servicing and Space Debris Management

    Get PDF
    There is growing demand for satellite swarms and constellations for global positioning, remote sensing and relay communication in higher LEO orbits. This will result in many obsolete, damaged and abandoned satellites that will remain on-orbit beyond 25 years. These abandoned satellites and space debris maybe economically valuable orbital real-estate and resources that can be reused, repaired or upgraded for future use. Space traffic management is critical to repair damaged satellites, divert satellites into warehouse orbits and effectively de-orbit satellites and space debris that are beyond repair and salvage. Current methods for on-orbit capture, servicing and repair require a large service satellite. However, by accessing abandoned satellites and space debris, there is an inherent heightened risk of damage to a servicing spacecraft. Sending multiple small-robots with each robot specialized in a specific task is a credible alternative, as the system is simple and cost-effective and where loss of one or more robots does not end the mission. In this work, we outline an end to end multirobot system to capture damaged and abandoned spacecraft for salvaging, repair and for de-orbiting. We analyze the feasibility of sending multiple, decentralized robots that can work cooperatively to perform capture of the target satellite as a first step, followed by crawling onto damage satellites to perform detailed mapping. After obtaining a detailed map of the satellite, the robots will proceed to either repair and replace or dismantle components for salvage operations. Finally, the remaining components will be packaged with a de-orbit device for accelerated de-orbit.Comment: 13 pages, 10 figures, Space Traffic Management Conference. arXiv admin note: text overlap with arXiv:1809.02028, arXiv:1809.04459, arXiv:1901.0971

    Method and associated apparatus for capturing, servicing, and de-orbiting earth satellites using robotics

    Get PDF
    This invention is a method and supporting apparatus for autonomously capturing, servicing and de-orbiting a free-flying spacecraft, such as a satellite, using robotics. The capture of the spacecraft includes the steps of optically seeking and ranging the satellite using LIDAR; and matching tumble rates, rendezvousing and berthing with the satellite. Servicing of the spacecraft may be done using supervised autonomy, which is allowing a robot to execute a sequence of instructions without intervention from a remote human-occupied location. These instructions may be packaged at the remote station in a script and uplinked to the robot for execution upon remote command giving authority to proceed. Alternately, the instructions may be generated by Artificial Intelligence (AI) logic onboard the robot. In either case, the remote operator maintains the ability to abort an instruction or script at any time, as well as the ability to intervene using manual override to teleoperate the robot.In one embodiment, a vehicle used for carrying out the method of this invention comprises an ejection module, which includes the robot, and a de-orbit module. Once servicing is completed by the robot, the ejection module separates from the de-orbit module, leaving the de-orbit module attached to the satellite for de-orbiting the same at a future time. Upon separation, the ejection module can either de-orbit itself or rendezvous with another satellite for servicing. The ability to de-orbit a spacecraft further allows the opportunity to direct the landing of the spent satellite in a safe location away from population centers, such as the ocean

    An Earth Orbiting Satellite Service and Repair Facility

    Get PDF
    A conceptual design was produced for the Geosynchronous Satellite Servicing Platform (GSSP), an orbital facility capable of repairing and servicing satellites in geosynchronous orbit. The GSSP is a man-tended platform, which consists of a habitation module, operations module, service bay and truss assembly. This design review includes an analysis of life support systems, thermal and power requirements, robotic and automated systems, control methods and navigation, and communications systems. The GSSP will utilize existing technology available at the time of construction, focusing mainly on modifying and integrating existing systems. The entire facility, along with two satellite retrieval vehicles (SRV), will be placed in geosynchronous orbit by the Advanced Launch System. The SRV will be used to ferry satellites to and from the GSSP. Technicians will be transferred from Earth to the GSSP and back in an Apollo-derived Crew Transfer Capsule (CTC). These missions will use advanced telerobotic equipment to inspect and service satellites. Four of these missions are tentatively scheduled per year. At this rate, the GSSP will service over 650 satelites during the projected 25 year lifespan

    Comparison of Three Machine Vision Pose Estimation Systems Based on Corner, Line, and Ellipse Extraction for Satellite Grasping

    Get PDF
    The primary objective of this research was to use three different types of features (corners, lines, and ellipses) for the purpose of satellite grasping with a machine vision-based pose estimation system. The corner system is used to track sharp corners or small features (holes or bolt) in the satellite; the lines system tracks sharp edges while the ellipse system tracks circular features in the satellite. The corner and line system provided 6 degrees of freedom (DOF) pose (rotation matrix and translation vector) of the satellite with respect to the camera frame, while the ellipse system provided 5 DOF pose (normal vector and center position) of the circular feature with respect to the camera frame. Satellite grasping is required for on-orbit satellite servicing and refueling. Three machine vision estimation systems (base on line, corner, and ellipse extraction) were studied and compared using a simulation environment. The corner extraction system was based on the Shi-Tomasi method; the line extraction system was based on the Hough transform; while the ellipse system is based on the fast ellipse extractor. Each system tracks its corresponding most prominent feature of the satellite. In order to evaluate the performance of each position estimation system, six maneuvers, three in translation (xyz) and three in rotation (roll pitch yaw), three different initial positions, and three different levels of Gaussian noise were considered in the virtual environment. Also, a virtual and real approach using a robotic manipulator sequence was performed in order to predict how each system could perform in a real application. Each system was compared using the mean and variance of the translational and rotational position estimation error. The virtual environment features a CAD model of a satellite created using SolidWorks which contained three common satellite features; that is a square plate, a marman ring, and a thruster. The corner and line pose estimation systems increased accuracy and precision as the distance decreases allowing for up to 2 centimeters of accuracy in translation. However, under heavy noise situations the corner position estimation system lost tracking and could not recover, while the line position estimation system did not lose track. The ellipse position estimation system was more robust, allowing the system to automatically recover, if tracking was lost, with accuracy up to 4 centimeters. During both approach sequences the ellipse system was the most robust, being able to track the satellite consistently. The corner system could not track the system throughout the approach in real or virtual approaches and the line system could track the satellite during the virtual approach sequence

    Pose Measurement Performance of the Argon Relative Navigation Sensor Suite in Simulated Flight Conditions

    Get PDF
    Argon is a flight-ready sensor suite with two visual cameras, a flash LIDAR, an on- board flight computer, and associated electronics. Argon was designed to provide sensing capabilities for relative navigation during proximity, rendezvous, and docking operations between spacecraft. A rigorous ground test campaign assessed the performance capability of the Argon navigation suite to measure the relative pose of high-fidelity satellite mock-ups during a variety of simulated rendezvous and proximity maneuvers facilitated by robot manipulators in a variety of lighting conditions representative of the orbital environment. A brief description of the Argon suite and test setup are given as well as an analysis of the performance of the system in simulated proximity and rendezvous operations

    Seeker 1.0: Prototype Robotic Free Flying Inspector Mission Overview

    Get PDF
    Seeker 1.0 is a prototype free flying robot that will one day be capable of inspecting human-rated spacecraft. Building off previous free flyer experience, this technology will eventually improve safety of human spacecraft by offering a variety of inspection capabilities for both routine and emergency scenarios providing increased capability and safety over current inspection methods. Seeker 1.0 is capable of 6 degree of freedom flight via a cold gas propulsion system and can operate up to 1 hour via a semi-autonomous guidance, navigation, and control system. The prototype spacecraft is capable of capturing still images at a variety of resolutions up to 13 MP. The initial test flight utilizes a command and data relay box called Kenobi. Kenobi is a derivative of the Seeker design and will communicate between Cygnus and Seeker and store data for post-mission downlink. Seeker and Kenobi have launched inside a NanoRacks External CubeSat Deployer (NRCSD-E) attached to the NG-11 Cygnus ISS resupply vehicle and will operate after Cygnus departs ISS and moves to a safe altitude. Operations will last approximately 30 minutes and will consist of basic vehicle maneuvers while capturing high-resolution still images. With any remaining time and propellant, Seeker will demonstrate additional safety capabilities and maneuvers required for operations around a crewed spacecraft. The Seeker project utilized the Class IE process that allows for streamlined flight hardware development and increased mission risk tolerance

    NASA Automated Rendezvous and Capture Review. A compilation of the abstracts

    Get PDF
    This document presents a compilation of abstracts of papers solicited for presentation at the NASA Automated Rendezvous and Capture Review held in Williamsburg, VA on November 19-21, 1991. Due to limitations on time and other considerations, not all abstracts could be presented during the review. The organizing committee determined however, that all abstracts merited availability to all participants and represented data and information reflecting state-of-the-art of this technology which should be captured in one document for future use and reference. The organizing committee appreciates the interest shown in the review and the response by the authors in submitting these abstracts

    End to End Satellite Servicing and Space Debris Management

    Get PDF
    There is growing demand for satellite swarms and constellations for global positioning, remote sensing and relay communication in higher LEO orbits. This will result in many obsolete, damaged and abandoned satellites that will remain on-orbit beyond 25 years. These abandoned satellites and space debris maybe economically valuable orbital real-estate and resources that can be reused, repaired or upgraded for future use. Space traffic management is critical to repair damaged satellites, divert satellites into warehouse orbits and effectively deorbit satellites and space debris that are beyond repair and salvage. Current methods for on-orbit capture, servicing and repair require a large service satellite. However, by accessing abandoned satellites and space debris, there is an inherent heightened risk of damage to a servicing spacecraft. Sending multiple small-robots with each robot specialized in a specific task is a credible alternative, as the system is simple and cost-effective and where loss of one or more robots does not end the mission. In this work, we outline an end to end multirobot system to capture damaged and abandoned spacecraft for salvaging, repair and for deorbiting. We analyze the feasibility of sending multiple, decentralized robots that can work cooperatively to perform capture of the target satellite as a first step, followed by crawling onto damage satellites to perform detailed mapping. After obtaining a detailed map of the satellite, the robots will proceed to either repair and replace or dismantle components for salvage operations. Finally, the remaining components will be packaged with a de-orbit device for accelerated de-orbit

    Pathfinder autonomous rendezvous and docking project

    Get PDF
    Capabilities are being developed and demonstrated to support manned and unmanned vehicle operations in lunar and planetary orbits. In this initial phase, primary emphasis is placed on definition of the system requirements for candidate Pathfinder mission applications and correlation of these system-level requirements with specific requirements. The FY-89 activities detailed are best characterized as foundation building. The majority of the efforts were dedicated to assessing the current state of the art, identifying desired elaborations and expansions to this level of development and charting a course that will realize the desired objectives in the future. Efforts are detailed across all work packages in developing those requirements and tools needed to test, refine, and validate basic autonomous rendezvous and docking elements
    • …
    corecore