7,327 research outputs found

    Machine learning solutions for maintenance of power plants

    Get PDF
    The primary goal of this work is to present analysis of current market for predictive maintenance software solutions applicable to a generic coal/gas-fired thermal power plant, as well as to present a brief discussion on the related developments of the near future. This type of solutions is in essence an advanced condition monitoring technique, that is used to continuously monitor entire plants and detect sensor reading deviations via correlative calculations. This approach allows for malfunction forecasting well in advance to a malfunction itself and any possible unforeseen consequences. Predictive maintenance software solutions employ primitive artificial intelligence in the form of machine learning (ML) algorithms to provide early detection of signal deviation. Before analyzing existing ML based solutions, structure and theory behind the processes of coal/gas driven power plants is going to be discussed to emphasize the necessity of predictive maintenance for optimal and reliable operation. Subjects to be discussed are: basic theory (thermodynamics and electrodynamics), primary machinery types, automation systems and data transmission, typical faults and condition monitoring techniques that are also often used in tandem with ML. Additionally, the basic theory on the main machine learning techniques related to malfunction prediction is going to be briefly presented

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Energy-efficient through-life smart design, manufacturing and operation of ships in an industry 4.0 environment

    Get PDF
    Energy efficiency is an important factor in the marine industry to help reduce manufacturing and operational costs as well as the impact on the environment. In the face of global competition and cost-effectiveness, ship builders and operators today require a major overhaul in the entire ship design, manufacturing and operation process to achieve these goals. This paper highlights smart design, manufacturing and operation as the way forward in an industry 4.0 (i4) era from designing for better energy efficiency to more intelligent ships and smart operation through-life. The paper (i) draws parallels between ship design, manufacturing and operation processes, (ii) identifies key challenges facing such a temporal (lifecycle) as opposed to spatial (mass) products, (iii) proposes a closed-loop ship lifecycle framework and (iv) outlines potential future directions in smart design, manufacturing and operation of ships in an industry 4.0 value chain so as to achieve more energy-efficient vessels. Through computational intelligence and cyber-physical integration, we envision that industry 4.0 can revolutionise ship design, manufacturing and operations in a smart product through-life process in the near future

    Research Avenues on use of Augmented Reality in Education

    Get PDF
    The use of Innovative technology in education enhances the grasping ability of the student to gain knowledge proactively and provides a platform for a constructive process of learning and understanding. Augmented Reality (AR) plays an essential role in active learning and critical thinking in the current information age because technology enables students to interact with the virtual world with an immersive experience. Moreover, the integration of AR in education has attracted researcher’s attention towards AR due to its immersive, naturalistic experience. Augmented reality plays a vital role in Medical Science, the Aviation industry, the Advertising industry, the Printing Industry, Maintenance, Tourism, Education, the Automobile industry and many more upcoming industries. The use of AR is going to be spread in the coming days. This paper comprises an overview and the study of augmented reality in different sectors. On emphasising the uses of AR in the education field, to give a real-life interactive experience to the user on his mobile. The review narrates the ability of AR, and applications of AR in the field of education such as science education, Industrial training, and biomedical education. The review summarises the potential of technology integration

    Augmented reality applied to design for disassembly assessment for a volumetric pump with rotating cylinder

    Get PDF
    Design for Disassembly (DfD) and Augmented Reality (AR) have become promising approaches to improve sustainability, by providing efficient delivery and learning assets. This study combines DfD and AR to deliver a method that helps to streamline maintenance processes and operator training. It focuses on a common part in the process industry that requires frequent maintenance and repair. DfD was applied to the pump’s design to ease disassembly and reduce material waste, energy consumption, and maintenance time. AR was used to provide an interactive guide to improve the operator understanding of its internal parts and assembly/disassembly procedures. The resulting DfD-AR led to a reduction in maintenance time and shows potential to deliver better training. This highlights the potential of DfD and AR to enhance sustainability, learning, and productivity. The resulting disassembly sequence was taken to an AR simulation, helping process designers to better understand the procedure and further optimize the solution with other constraints

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Case study of virtual reality in CNC machine tool exhibition

    Full text link
    corecore