4,815 research outputs found

    Implementable Wireless Access for B3G Networks - III: Complexity Reducing Transceiver Structures

    No full text
    This article presents a comprehensive overview of some of the research conducted within Mobile VCE’s Core Wireless Access Research Programme,1 a key focus of which has naturally been on MIMO transceivers. The series of articles offers a coherent view of how the work was structured and comprises a compilation of material that has been presented in detail elsewhere (see references within the article). In this article MIMO channel measurements, analysis, and modeling, which were presented previously in the first article in this series of four, are utilized to develop compact and distributed antenna arrays. Parallel activities led to research into low-complexity MIMO single-user spacetime coding techniques, as well as SISO and MIMO multi-user CDMA-based transceivers for B3G systems. As well as feeding into the industry’s in-house research program, significant extensions of this work are now in hand, within Mobile VCE’s own core activity, aiming toward securing major improvements in delivery efficiency in future wireless systems through crosslayer operation

    Dispensing with Channel Estimation…

    No full text
    In this article, we investigate the feasibility of noncoherent detection schemes in wireless communication systems as a low-complexity alternative to the family of coherent schemes. The noncoherent schemes require no channel knowledge at the receiver for the detection of the received signal, while the coherent schemes require channel inherently complex estimation, which implies that pilot symbols have to be transmitted resulting in a wastage of the available bandwidth as well as the transmission power

    Soft-Information Assisted Near-Optimum Nonlinear Detection for BLAST-type Space Division Multiplexing OFDM Systems

    No full text
    In this contribution, a nonlinear hybrid detection scheme based on a novel soft-information assisted Genetic Algorithm (GA) is proposed for a Turbo Convolutional (TC) coded Space Division Multiplexing (SDM) aided Orthogonal Frequency Division Multiplexing (OFDM) system. Our numerical results show that the performance of the currently known GA-assisted system can be improved by about 2dB with the aid of the GA’s population-based soft solution, approaching the optimum performance of the soft-information assisted Maximum Likelihood (ML) detection, while exhibiting a lower complexity, especially in high-throughput scenarios. Furthermore, the proposed scheme is capable of achieving a good performance even in the so-called overloaded systems, where the number of transmit antennas is higher than the number of receiver antennas. Index Terms—Genetic algorithm, orthogonal frequency division multiplexing, soft information, space division multiplexing

    Joint data detection and channel estimation for OFDM systems

    Get PDF
    We develop new blind and semi-blind data detectors and channel estimators for orthogonal frequency-division multiplexing (OFDM) systems. Our data detectors require minimizing a complex, integer quadratic form in the data vector. The semi-blind detector uses both channel correlation and noise variance. The quadratic for the blind detector suffers from rank deficiency; for this, we give a low-complexity solution. Avoiding a computationally prohibitive exhaustive search, we solve our data detectors using sphere decoding (SD) and V-BLAST and provide simple adaptations of the SD algorithm. We consider how the blind detector performs under mismatch, generalize the basic data detectors to nonunitary constellations, and extend them to systems with pilots and virtual carriers. Simulations show that our data detectors perform well

    Maximum-Likelihood Sequence Detection of Multiple Antenna Systems over Dispersive Channels via Sphere Decoding

    Get PDF
    Multiple antenna systems are capable of providing high data rate transmissions over wireless channels. When the channels are dispersive, the signal at each receive antenna is a combination of both the current and past symbols sent from all transmit antennas corrupted by noise. The optimal receiver is a maximum-likelihood sequence detector and is often considered to be practically infeasible due to high computational complexity (exponential in number of antennas and channel memory). Therefore, in practice, one often settles for a less complex suboptimal receiver structure, typically with an equalizer meant to suppress both the intersymbol and interuser interference, followed by the decoder. We propose a sphere decoding for the sequence detection in multiple antenna communication systems over dispersive channels. The sphere decoding provides the maximum-likelihood estimate with computational complexity comparable to the standard space-time decision-feedback equalizing (DFE) algorithms. The performance and complexity of the sphere decoding are compared with the DFE algorithm by means of simulations

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    A universal space-time architecture for multiple-antenna aided systems

    No full text
    In this tutorial, we first review the family of conventional multiple-antenna techniques, and then we provide a general overview of the recent concept of the powerful Multiple-Input Multiple-Output (MIMO) family based on a universal Space-Time Shift Keying (STSK) philosophy. When appropriately configured, the proposed STSK scheme has the potential of outperforming conventional MIMO arrangements

    Generalized space-time shift keying designed for flexible diversity-, multiplexing- and complexity-tradeoffs

    No full text
    In this paper, motivated by the recent concept of Spatial Modulation (SM), we propose a novel Generalized Space-Time Shift Keying (G-STSK) architecture, which acts as a unified Multiple-Input Multiple-Output (MIMO) framework. More specifically, our G-STSK scheme is based on the rationale that P out of Q dispersion matrices are selected and linearly combined in conjunction with the classic PSK/QAM modulation, where activating P out of Q dispersion matrices provides an implicit means of conveying information bits in addition to the classic modem. Due to its substantial flexibility, our G-STSK framework includes diverse MIMO arrangements, such as SM, Space-Shift Keying (SSK), Linear Dispersion Codes (LDCs), Space-Time Block Codes (STBCs) and Bell Lab’s Layered Space-Time (BLAST) scheme. Hence it has the potential of subsuming all of them, when flexibly adapting a set of system parameters. Moreover, we also derive the Discrete-input Continuous-output Memoryless Channel (DCMC) capacity for our G-STSK scheme, which serves as the unified capacity limit, hence quantifying the capacity of the class of MIMO arrangements. Furthermore, EXtrinsic Information Transfer (EXIT) chart analysis is used for designing our G-STSK scheme and for characterizing its iterative decoding convergence
    corecore