1,577 research outputs found

    Smart technologies for effective reconfiguration: the FASTER approach

    Get PDF
    Current and future computing systems increasingly require that their functionality stays flexible after the system is operational, in order to cope with changing user requirements and improvements in system features, i.e. changing protocols and data-coding standards, evolving demands for support of different user applications, and newly emerging applications in communication, computing and consumer electronics. Therefore, extending the functionality and the lifetime of products requires the addition of new functionality to track and satisfy the customers needs and market and technology trends. Many contemporary products along with the software part incorporate hardware accelerators for reasons of performance and power efficiency. While adaptivity of software is straightforward, adaptation of the hardware to changing requirements constitutes a challenging problem requiring delicate solutions. The FASTER (Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration) project aims at introducing a complete methodology to allow designers to easily implement a system specification on a platform which includes a general purpose processor combined with multiple accelerators running on an FPGA, taking as input a high-level description and fully exploiting, both at design time and at run time, the capabilities of partial dynamic reconfiguration. The goal is that for selected application domains, the FASTER toolchain will be able to reduce the design and verification time of complex reconfigurable systems providing additional novel verification features that are not available in existing tool flows

    FPGA dynamic and partial reconfiguration : a survey of architectures, methods, and applications

    Get PDF
    Dynamic and partial reconfiguration are key differentiating capabilities of field programmable gate arrays (FPGAs). While they have been studied extensively in academic literature, they find limited use in deployed systems. We review FPGA reconfiguration, looking at architectures built for the purpose, and the properties of modern commercial architectures. We then investigate design flows, and identify the key challenges in making reconfigurable FPGA systems easier to design. Finally, we look at applications where reconfiguration has found use, as well as proposing new areas where this capability places FPGAs in a unique position for adoption

    Evaluating dynamic partial reconfiguration in the integer pipeline of a FPGA-based opensource processor

    Get PDF

    A unified hardware/software runtime environment for FPGA-based reconfigurable computers using BORPH

    Get PDF
    Fulltext linkThis paper explores the design and implementation of BORPH, an operating system designed for FPGA-based reconfigurable computers. Hardware designs execute as normal UNIX processes under BORPH, having access to standard OS services, such as file system support. Hardware and software components of user designs may, therefore, run as communicating processes within BORPH's runtime environment. The familiar language independent UNIX kernel interface facilitates easy design reuse and rapid application development. To develop hardware designs, a Simulink-based design flow that integrates with BORPH is employed. Performances of BORPH on two on-chip systems implemented on a BEE2 platform are compared. © 2008 ACM.link_to_subscribed_fulltex

    Run-Time Reconfiguration for HyperTransport coupled FPGAs using ACCFS

    Get PDF
    In this paper we present a solution where only one FPGA is needed in a host coupled system, in which the FPGA can be reconfigured by a user application during run-time without loosing the host link connection. A hardware infrastructure on the FPGA and the software framework ACCFS (ACCelerator File System) on the host system is provided to the user which allow easy handling of reconfiguration and communication between the host and the FPGA. Such a system can be used for offloading compute kernels on the FPGA in high performance computing or exchanging functionality in highly available systems during run-time without loosing the host link during reconfiguration. The implementation was done for a HyperTransport coupled FPGA. The design of a HyperTransport cave was extended in such a way that it provides an infrastructure for run-time reconfigurable (RTR) modules
    • …
    corecore