1,013 research outputs found

    Adaptive fair channel allocation for QoS enhancement in IEEE 802.11 wireless LANs

    Get PDF
    The emerging widespread use of real-time multimedia applications over wireless networks makes the support of quality of service (QoS) a key problem. In this paper, we focus on QoS support mechanisms for IEEE 802.11 wireless ad-hoc networks. First, we review limitations of the upcoming IEEE 802.11e enhanced DCF (EDCF) and other enhanced MAC schemes that have been proposed to support QoS for 802.11 ad-hoc networks. Then, we describe a new scheme called adaptive fair EDCF that extends EDCF, by increasing the contention window during deferring periods when the channel is busy, and by using an adaptive fast backoff mechanism when the channel is idle. Our scheme computes an adaptive backoff threshold for each priority level by taking into account the channel load. The new scheme significantly improves the quality of multimedia applications. Moreover, it increases the overall throughput obtained both in medium and high load cases. Simulution results show that our new scheme outperforms EDCF and other enhanced schemes. Finally, we show that the adaptive fair EDCF scheme achieves a high degree of fairness among applications of the same priority level

    Adaptive EDCF: Enhanced service differentiation for IEEE 802.11 wireless ad-hoc networks

    Get PDF
    This paper describes an adaptive service differentiation scheme for QoS enhancement in IEEE 802.11 wireless ad-hoc networks. Our approach, called adaptive enhanced distributed coordination function (AEDCF), is derived from the new EDCF introduced in the upcoming IEEE 802.11e standard. Our scheme aims to share the transmission channel efficiently. Relative priorities are provisioned by adjusting the size of the contention window (CW) of each traffic class taking into account both applications requirements and network conditions. We evaluate through simulations the performance of AEDCF and compare it with the EDCF scheme proposed in the 802.11e. Results show that AEDCF outperforms the basic EDCF, especially at high traffic load conditions. Indeed, our scheme increases the medium utilization ratio and reduces for more than 50% the collision rate. While achieving delay differentiation, the overall goodput obtained is up to 25% higher than EDCF. Moreover, the complexity of AEDCF remains similar to the EDCF scheme, enabling the design of cheap implementations

    A Dynamic Multimedia User-Weight Classification Scheme for IEEE_802.11 WLANs

    Full text link
    In this paper we expose a dynamic traffic-classification scheme to support multimedia applications such as voice and broadband video transmissions over IEEE 802.11 Wireless Local Area Networks (WLANs). Obviously, over a Wi-Fi link and to better serve these applications - which normally have strict bounded transmission delay or minimum link rate requirement - a service differentiation technique can be applied to the media traffic transmitted by the same mobile node using the well-known 802.11e Enhanced Distributed Channel Access (EDCA) protocol. However, the given EDCA mode does not offer user differentiation, which can be viewed as a deficiency in multi-access wireless networks. Accordingly, we propose a new inter-node priority access scheme for IEEE 802.11e networks which is compatible with the EDCA scheme. The proposed scheme joins a dynamic user-weight to each mobile station depending on its outgoing data, and therefore deploys inter-node priority for the channel access to complement the existing EDCA inter-frame priority. This provides efficient quality of service control across multiple users within the same coverage area of an access point. We provide performance evaluations to compare the proposed access model with the basic EDCA 802.11 MAC protocol mode to elucidate the quality improvement achieved for multimedia communication over 802.11 WLANs.Comment: 15 pages, 8 figures, 3 tables, International Journal of Computer Networks & Communications (IJCNC

    Using multiple metrics for rate adaptation algorithms in IEEE 802.11 WLANs

    Get PDF

    Wireless Sensor Networks:A case study for Energy Efficient Environmental Monitoring

    No full text
    Energy efficiency is a key issue for wireless sensor networks, since sensors nodes can often be powered by non-renewable batteries. In this paper, we examine four MAC protocols in terms of energy consumption, throughput and energy efficiency. A forest fire detection application has been simulated using the well-known ns-2 in order to fully evaluate these protocols

    Performance of CAM based Safety Applications using ITS-G5A MAC in High Dense Scenarios

    Get PDF
    ETSI ITS-G5 is the current vehicle-to-vehicle communication technology in Europe, which will be standardized by ETSI TC ITS. It is based on IEEE 802.11p and therefore uses a CSMA/CA scheme for Media Access Control (MAC). In this paper we analyze the performance of CAM based safety applications using the ETSI ITS-G5 MAC technology in a challenging scenario with respect to MAC issues: A suitable freeway segment with 6 lanes in each direction. The freeway scenario is thoroughly modeled and implemented in the well known ns-3 simulation environment. Based on this model, the paper shows the performance of CAM based safety applications under MAC challenging conditions. Therefore we provide a set of simulation results resting upon a particular performance metric which incorporates the key requirements of safety applications. Finally we analyze two concrete example scenarios to make a point how reliable CAM based safety applications are in high dense traffic scenarios
    • …
    corecore