29 research outputs found

    Designs and Implementations in Neural Network-based Video Coding

    Full text link
    The past decade has witnessed the huge success of deep learning in well-known artificial intelligence applications such as face recognition, autonomous driving, and large language model like ChatGPT. Recently, the application of deep learning has been extended to a much wider range, with neural network-based video coding being one of them. Neural network-based video coding can be performed at two different levels: embedding neural network-based (NN-based) coding tools into a classical video compression framework or building the entire compression framework upon neural networks. This paper elaborates some of the recent exploration efforts of JVET (Joint Video Experts Team of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC29) in the name of neural network-based video coding (NNVC), falling in the former category. Specifically, this paper discusses two major NN-based video coding technologies, i.e. neural network-based intra prediction and neural network-based in-loop filtering, which have been investigated for several meeting cycles in JVET and finally adopted into the reference software of NNVC. Extensive experiments on top of the NNVC have been conducted to evaluate the effectiveness of the proposed techniques. Compared with VTM-11.0_nnvc, the proposed NN-based coding tools in NNVC-4.0 could achieve {11.94%, 21.86%, 22.59%}, {9.18%, 19.76%, 20.92%}, and {10.63%, 21.56%, 23.02%} BD-rate reductions on average for {Y, Cb, Cr} under random-access, low-delay, and all-intra configurations respectively

    Deep learning-based artifacts removal in video compression

    Get PDF
    Title from PDF of title page viewed December 15, 2021Dissertation advisor: Zhu LiVitaIncludes bibliographical references (pages 112-129)Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2021The block-based coding structure in the hybrid video coding framework inevitably introduces compression artifacts such as blocking, ringing, etc. To compensate for those artifacts, extensive filtering techniques were proposed in the loop of video codecs, which are capable of boosting the subjective and objective qualities of reconstructed videos. Recently, neural network-based filters were presented with the power of deep learning from a large magnitude of data. Though the coding efficiency has been improved from traditional methods in High-Efficiency Video Coding (HEVC), the rich features and in- formation generated by the compression pipeline has not been fully utilized in the design of neural networks. Therefore, we propose a learning-based method to further improve the coding efficiency to its full extent. In addition, the point cloud is an essential format for three-dimensional (3-D) ob- jects capture and communication for Augmented Reality (AR) and Virtual Reality (VR) applications. In the current state of the art video-based point cloud compression (V-PCC),a dynamic point cloud is projected onto geometry and attribute videos patch by patch, each represented by its texture, depth, and occupancy map for reconstruction. To deal with oc- clusion, each patch is projected onto near and far depth fields in the geometry video. Once there are artifacts on the compressed two-dimensional (2-D) geometry video, they would be propagated to the 3-D point cloud frames. In addition, in the lossy compression, there always exists a tradeoff between the rate of bitstream and distortion (RD). Although some methods were proposed to attenuate these artifacts and improve the coding efficiency, the non-linear representation ability of Convolutional Neural Network (CNN) has not been fully considered. Therefore, we propose a learning-based approach to remove the geom- etry artifacts and improve the compressing efficiency. Besides, we propose using a CNN to improve the accuracy of the occupancy map video in V-PCC. To the best of our knowledge, these are the first learning-based solutions of the geometry artifacts removal in HEVC and occupancy map enhancement in V-PCC. The extensive experimental results show that the proposed approaches achieve significant gains in HEVC and V-PCC compared to the state-of-the-art schemes.Residual-Guided In-Loop Filter Using Convolution Neural Network -- Deep learning geometry compression artifacts removal for video-based point cloud compression -- Convolutional Neural Network-Based Occupancy Map Accuracy Improvement for Video-based Point Cloud Compressio

    Efficient HEVC-based video adaptation using transcoding

    Get PDF
    In a video transmission system, it is important to take into account the great diversity of the network/end-user constraints. On the one hand, video content is typically streamed over a network that is characterized by different bandwidth capacities. In many cases, the bandwidth is insufficient to transfer the video at its original quality. On the other hand, a single video is often played by multiple devices like PCs, laptops, and cell phones. Obviously, a single video would not satisfy their different constraints. These diversities of the network and devices capacity lead to the need for video adaptation techniques, e.g., a reduction of the bit rate or spatial resolution. Video transcoding, which modifies a property of the video without the change of the coding format, has been well-known as an efficient adaptation solution. However, this approach comes along with a high computational complexity, resulting in huge energy consumption in the network and possibly network latency. This presentation provides several optimization strategies for the transcoding process of HEVC (the latest High Efficiency Video Coding standard) video streams. First, the computational complexity of a bit rate transcoder (transrater) is reduced. We proposed several techniques to speed-up the encoder of a transrater, notably a machine-learning-based approach and a novel coding-mode evaluation strategy have been proposed. Moreover, the motion estimation process of the encoder has been optimized with the use of decision theory and the proposed fast search patterns. Second, the issues and challenges of a spatial transcoder have been solved by using machine-learning algorithms. Thanks to their great performance, the proposed techniques are expected to significantly help HEVC gain popularity in a wide range of modern multimedia applications

    A Comparison of Image Denoising Methods

    Full text link
    The advancement of imaging devices and countless images generated everyday pose an increasingly high demand on image denoising, which still remains a challenging task in terms of both effectiveness and efficiency. To improve denoising quality, numerous denoising techniques and approaches have been proposed in the past decades, including different transforms, regularization terms, algebraic representations and especially advanced deep neural network (DNN) architectures. Despite their sophistication, many methods may fail to achieve desirable results for simultaneous noise removal and fine detail preservation. In this paper, to investigate the applicability of existing denoising techniques, we compare a variety of denoising methods on both synthetic and real-world datasets for different applications. We also introduce a new dataset for benchmarking, and the evaluations are performed from four different perspectives including quantitative metrics, visual effects, human ratings and computational cost. Our experiments demonstrate: (i) the effectiveness and efficiency of representative traditional denoisers for various denoising tasks, (ii) a simple matrix-based algorithm may be able to produce similar results compared with its tensor counterparts, and (iii) the notable achievements of DNN models, which exhibit impressive generalization ability and show state-of-the-art performance on various datasets. In spite of the progress in recent years, we discuss shortcomings and possible extensions of existing techniques. Datasets, code and results are made publicly available and will be continuously updated at https://github.com/ZhaomingKong/Denoising-Comparison.Comment: In this paper, we intend to collect and compare various denoising methods to investigate their effectiveness, efficiency, applicability and generalization ability with both synthetic and real-world experiment

    Video enhancement : content classification and model selection

    Get PDF
    The purpose of video enhancement is to improve the subjective picture quality. The field of video enhancement includes a broad category of research topics, such as removing noise in the video, highlighting some specified features and improving the appearance or visibility of the video content. The common difficulty in this field is how to make images or videos more beautiful, or subjectively better. Traditional approaches involve lots of iterations between subjective assessment experiments and redesigns of algorithm improvements, which are very time consuming. Researchers have attempted to design a video quality metric to replace the subjective assessment, but so far it is not successful. As a way to avoid heuristics in the enhancement algorithm design, least mean square methods have received considerable attention. They can optimize filter coefficients automatically by minimizing the difference between processed videos and desired versions through a training. However, these methods are only optimal on average but not locally. To solve the problem, one can apply the least mean square optimization for individual categories that are classified by local image content. The most interesting example is Kondo’s concept of local content adaptivity for image interpolation, which we found could be generalized into an ideal framework for content adaptive video processing. We identify two parts in the concept, content classification and adaptive processing. By exploring new classifiers for the content classification and new models for the adaptive processing, we have generalized a framework for more enhancement applications. For the part of content classification, new classifiers have been proposed to classify different image degradations such as coding artifacts and focal blur. For the coding artifact, a novel classifier has been proposed based on the combination of local structure and contrast, which does not require coding block grid detection. For the focal blur, we have proposed a novel local blur estimation method based on edges, which does not require edge orientation detection and shows more robust blur estimation. With these classifiers, the proposed framework has been extended to coding artifact robust enhancement and blur dependant enhancement. With the content adaptivity to more image features, the number of content classes can increase significantly. We show that it is possible to reduce the number of classes without sacrificing much performance. For the part of model selection, we have introduced several nonlinear filters to the proposed framework. We have also proposed a new type of nonlinear filter, trained bilateral filter, which combines both advantages of the original bilateral filter and the least mean square optimization. With these nonlinear filters, the proposed framework show better performance than with linear filters. Furthermore, we have shown a proof-of-concept for a trained approach to obtain contrast enhancement by a supervised learning. The transfer curves are optimized based on the classification of global or local image content. It showed that it is possible to obtain the desired effect by learning from other computationally expensive enhancement algorithms or expert-tuned examples through the trained approach. Looking back, the thesis reveals a single versatile framework for video enhancement applications. It widens the application scope by including new content classifiers and new processing models and offers scalabilities with solutions to reduce the number of classes, which can greatly accelerate the algorithm design

    Artificial Intelligence for Multimedia Signal Processing

    Get PDF
    Artificial intelligence technologies are also actively applied to broadcasting and multimedia processing technologies. A lot of research has been conducted in a wide variety of fields, such as content creation, transmission, and security, and these attempts have been made in the past two to three years to improve image, video, speech, and other data compression efficiency in areas related to MPEG media processing technology. Additionally, technologies such as media creation, processing, editing, and creating scenarios are very important areas of research in multimedia processing and engineering. This book contains a collection of some topics broadly across advanced computational intelligence algorithms and technologies for emerging multimedia signal processing as: Computer vision field, speech/sound/text processing, and content analysis/information mining

    Towards Better Image Embeddings Using Neural Networks

    Get PDF
    The primary focus of this dissertation is to study image embeddings extracted by neural networks. Deep Learning (DL) is preferred over traditional Machine Learning (ML) for the reason that feature representations can be automatically constructed from data without human involvement. On account of the effectiveness of deep features, the last decade has witnessed unprecedented advances in Computer Vision (CV), and more real-world applications are expected to be introduced in the coming years. A diverse collection of studies has been included, covering areas such as person re-identification, vehicle attribute recognition, neural image compression, clustering and unsupervised anomaly detection. More specifically, three aspects of feature representations have been thoroughly analyzed. Firstly, features should be distinctive, i.e., features of samples from distinct categories ought to differ significantly. Extracting distinctive features is essential for image retrieval systems, in which an algorithm finds the gallery sample that is closest to a query sample. Secondly, features should be privacy-preserving, i.e., inferring sensitive information from features must be infeasible. With the widespread adoption of Machine Learning as a Service (MLaaS), utilizing privacy-preserving features prevents privacy violations even if the server has been compromised. Thirdly, features should be compressible, i.e., compact features are preferable as they require less storage space. Obtaining compressible features plays a vital role in data compression. Towards the goal of deriving distinctive, privacy-preserving and compressible feature representations, research articles included in this dissertation reveal different approaches to improving image embeddings learned by neural networks. This topic remains a fundamental challenge in Machine Learning, and further research is needed to gain a deeper understanding
    corecore