76 research outputs found

    Get closer to activate it! An educational tool for people with multiple disabilities

    Get PDF
    This paper presents an interactive system which offers multimodal feedback to users with severe to profound disabilities to improve their relationship with the environment allowing them to control it. The system is based on the information provided by a distance sensor connected to an Arduino board. The distance information is based on the position of the user’s hand, and it is then passed to six different action/reaction applications which offer motivation and engage users to train intentional motor movements of their upper body limbs and to improve their relationship with the environment.XIII Workshop Tecnología Informática Aplicada en Educación (WTIAE)Red de Universidades con Carreras en Informática (RedUNCI

    Get closer to activate it! An educational tool for people with multiple disabilities

    Get PDF
    This paper presents an interactive system which offers multimodal feedback to users with severe to profound disabilities to improve their relationship with the environment allowing them to control it. The system is based on the information provided by a distance sensor connected to an Arduino board. The distance information is based on the position of the user’s hand, and it is then passed to six different action/reaction applications which offer motivation and engage users to train intentional motor movements of their upper body limbs and to improve their relationship with the environment.XIII Workshop Tecnología Informática Aplicada en Educación (WTIAE)Red de Universidades con Carreras en Informática (RedUNCI

    Accessibility of Health Data Representations for Older Adults: Challenges and Opportunities for Design

    Get PDF
    Health data of consumer off-the-shelf wearable devices is often conveyed to users through visual data representations and analyses. However, this is not always accessible to people with disabilities or older people due to low vision, cognitive impairments or literacy issues. Due to trade-offs between aesthetics predominance or information overload, real-time user feedback may not be conveyed easily from sensor devices through visual cues like graphs and texts. These difficulties may hinder critical data understanding. Additional auditory and tactile feedback can also provide immediate and accessible cues from these wearable devices, but it is necessary to understand existing data representation limitations initially. To avoid higher cognitive and visual overload, auditory and haptic cues can be designed to complement, replace or reinforce visual cues. In this paper, we outline the challenges in existing data representation and the necessary evidence to enhance the accessibility of health information from personal sensing devices used to monitor health parameters such as blood pressure, sleep, activity, heart rate and more. By creating innovative and inclusive user feedback, users will likely want to engage and interact with new devices and their own data

    A Person-Centric Design Framework for At-Home Motor Learning in Serious Games

    Get PDF
    abstract: In motor learning, real-time multi-modal feedback is a critical element in guided training. Serious games have been introduced as a platform for at-home motor training due to their highly interactive and multi-modal nature. This dissertation explores the design of a multimodal environment for at-home training in which an autonomous system observes and guides the user in the place of a live trainer, providing real-time assessment, feedback and difficulty adaptation as the subject masters a motor skill. After an in-depth review of the latest solutions in this field, this dissertation proposes a person-centric approach to the design of this environment, in contrast to the standard techniques implemented in related work, to address many of the limitations of these approaches. The unique advantages and restrictions of this approach are presented in the form of a case study in which a system entitled the "Autonomous Training Assistant" consisting of both hardware and software for guided at-home motor learning is designed and adapted for a specific individual and trainer. In this work, the design of an autonomous motor learning environment is approached from three areas: motor assessment, multimodal feedback, and serious game design. For motor assessment, a 3-dimensional assessment framework is proposed which comprises of 2 spatial (posture, progression) and 1 temporal (pacing) domains of real-time motor assessment. For multimodal feedback, a rod-shaped device called the "Intelligent Stick" is combined with an audio-visual interface to provide feedback to the subject in three domains (audio, visual, haptic). Feedback domains are mapped to modalities and feedback is provided whenever the user's performance deviates from the ideal performance level by an adaptive threshold. Approaches for multi-modal integration and feedback fading are discussed. Finally, a novel approach for stealth adaptation in serious game design is presented. This approach allows serious games to incorporate motor tasks in a more natural way, facilitating self-assessment by the subject. An evaluation of three different stealth adaptation approaches are presented and evaluated using the flow-state ratio metric. The dissertation concludes with directions for future work in the integration of stealth adaptation techniques across the field of exergames.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Design of Cognitive Interfaces for Personal Informatics Feedback

    Get PDF

    Design for Everyday Sounds in Dementia

    Get PDF

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Head-mounted Sensory Augmentation System for Navigation in Low Visibility Environments

    Get PDF
    Sensory augmentation can be used to assist in some tasks where sensory information is limited or sparse. This thesis focuses on the design and investigation of a head-mounted vibrotactile sensory augmentation interface to assist navigation in low visibility environments such as firefighters’ navigation or travel aids for visually impaired people. A novel head-mounted vibrotactile interface comprising a 1-by-7 vibrotactile display worn on the forehead is developed. A series of psychophysical studies is carried out with this display to (1) determine the vibrotactile absolute threshold, (2) investigate the accuracy of vibrotactile localization, and (3) evaluate the funneling illusion and apparent motion as sensory phenomena that could be used to communicate navigation signals. The results of these studies provide guidelines for the design of head-mounted interfaces. A 2nd generation head-mounted sensory augmentation interface called the Mark-II Tactile Helmet is developed for the application of firefighters’ navigation. It consists of a ring of ultrasound sensors mounted to the outside of a helmet, a microcontroller, two batteries and a refined vibrotactile display composed of seven vibration motors based on the results of the aforementioned psychophysical studies. A ‘tactile language’, that is, a set of distinguishable vibrotactile patterns, is developed for communicating navigation commands to the Mark-II Tactile Helmet. Four possible combinations of two command presentation modes (continuous, discrete) and two command types (recurring, single) are evaluated for their effectiveness in guiding users along a virtual wall in a structured environment. Continuous and discrete presentation modes use spatiotemporal patterns that induce the experience of apparent movement and discrete movement on the forehead, respectively. The recurring command type presents the tactile command repeatedly with an interval between patterns of 500 ms while the single command type presents the tactile command just once when there is a change in the command. The effectiveness of this tactile language is evaluated according to the objective measures of the users’ walking speed and the smoothness of their trajectory parallel to the virtual wall and subjective measures of utility and comfort employing Likert-type rating scales. The Recurring Continuous (RC) commands that exploit the phenomena of apparent motion are most effective in generating efficient routes and fast travel, and are most preferred. Finally, the optimal tactile language (RC) is compared with audio guidance using verbal instructions to investigate effectiveness in delivering navigation commands. The results show that haptic guidance leads to better performance as well as lower cognitive workload compared to auditory feedback. This research demonstrates that a head-mounted sensory augmentation interface can enhance spatial awareness in low visibility environments and could help firefighters’ navigation by providing them with supplementary sensory information

    The Use of Communication Facilitators With Severely Brain Injured Non-Responsive Adults.

    Get PDF
    Slow-to-Recover (STR) individuals are a subset of the neurologically impaired population who remain non-responsive for extended periods of time before beginning to demonstrate improvement in cognitive, communicative, or motor function. This investigation focuses on the development and implementation of a facilitator-based intervention program carried out with an STR brain injured adult residing in a long-term care facility. The model involved: (1) sensory stimulation techniques to increase responses to external stimuli, (2) augmentative techniques which enabled the subject to control his immediate environment and, (3) training of qualified residents within the facility to act as communication facilitators. Ethnographic procedures were employed in conjunction with quantitative measures over a six-month period to measure changes in the subject\u27s functional abilities and describe overall changes in the communicative environment. Following eight weeks of communicative intervention, there were positive changes in the cognitive, motor, and communicative abilities of the subject that affected the interactive patterns and behavior of other participants. Results are discussed with regard to the contribution of each intervention technique in bringing about these changes
    • …
    corecore