18,740 research outputs found

    A CMOS class-AB transconductance amplifier for switched-capacitor applications

    Get PDF
    A CMOS operational transconductance amplifier (OTA) using a fully differential single-stage core OTA as the input stage and a differential to single current converter as the output stage, each biased at a separate current level, is presented. A large gain-bandwidth product (2.7 MHz) and a high slew-rate (5 V/ÎĽs) can be obtained by applying a large bias current to the core OTA. Due to the class-AB operation of the output stage, a high output impedance can be obtained by applying a small bias current to the output stage, resulting in a high DC-gain (61.6 dB). When the performance of this class-AB OTA is compared with that of basic single-stage OTAs it is found that the output impedance of the class-AB OTA is increased without limiting the bandwidth or slew-rat

    An Octave-Range, Watt-Level, Fully-Integrated CMOS Switching Power Mixer Array for Linearization and Back-Off-Efficiency Improvement

    Get PDF
    The power mixer array is presented as a novel power generation approach for non-constant envelope signals. It comprises several power mixer units that are dynamically turned on and off to improve the linearity and back-off efficiency. At the circuit level, the power mixer unit can operate as a switching amplifier to achieve high peak power efficiency. Additional circuit level linearization and back-off efficiency improvement techniques are also proposed. To demonstrate the feasibility of this idea, a fully-integrated octave-range CMOS power mixer array is implemented in a 130 nm CMOS process. It is operational between 1.2 GHz and 2.4 GHz and can generate an output power of +31.3 dBm into an external 50 Ω load with a PAE of 42% and a gain compression of only 0.4 dB at 1.8 GHz. It achieves a PAE of 25%, at an average output power of +26.4 dBm, and an EVM of 4.6% with a non-constant-envelope 16 QAM signal. It can also produce arbitrary signal levels down to -70 dBm of output power with the 16 QAM-modulated signal without any RF gain control circuit

    Shot noise suppression at room temperature in atomic-scale Au junctions

    Full text link
    Shot noise encodes additional information not directly inferable from simple electronic transport measurements. Previous measurements in atomic-scale metal junctions at cryogenic temperatures have shown suppression of the shot noise at particular conductance values. This suppression demonstrates that transport in these structures proceeds via discrete quantum channels. Using a high frequency technique, we simultaneously acquire noise data and conductance histograms in Au junctions at room temperature and ambient conditions. We observe noise suppression at up to three conductance quanta, with possible indications of current-induced local heating and 1/f1/f noise in the contact region at high biases. These measurements demonstrate the quantum character of transport at room temperature at the atomic scale. This technique provides an additional tool for studying dissipation and correlations in nanodevices.Comment: 15 pages, 4 figures + supporting information (6 pages, 6 figures

    Design of a Fully Differential Current Mode Operational Amplifier with Improved Input-Output Impedances and Its Filter Applications

    Get PDF
    Abstract -In this paper, a CMOS implementation of a fully differential current-mode operational amplifier (COA) is presented. To achieve very low input resistance, a new technique based on a positive feedback is used in the input transimpedance stage. Additionally, traditional current output stage (Arbel Goldminz output stage) with improved output resistance is selected as a transconductance stage. Results of simulations exhibit 96 dB DC gain, nearly 120Ω input, 30 MΩ output resistances and a gain-bandwidth product exceeding 90 MHz. The proposed COA is operated under ±1.5 V voltage supplies and designed with 0.35-μm CMOS process. Furthermore, COA-based 4 th order band-pass (BP) filter consisting of Butterworth low-pass (LP) and high-pass (HP) filters is realized as an application example. SPICE simulation results are included to verify correctness of the designs

    A Novel Fully Differential Second Generation Current Conveyor and Its Application as a Very High CMRR Instrumentation Amplifier

    Get PDF
    This paper aims to introduce a novel Fully Differential second generation Current Conveyor (FDCCII) and its application to design a novel Low Power (LP), very high CMRR, and wide bandwidth (BW) Current Mode Instrumentation Amplifier (CMIA). In the proposed application, CMRR, as the most important feature, has been greatly improved by using both common mode feed forward (CMFF) and common mode feedback (CMFB) techniques, which are verified by a perfect circuit analysis. As another unique quality, it neither needs well-matched active blocks nor matched resistors but inherently improves CMRR, BW, and power consumption hence gains an excellent matchless choice for integration. The FDCCII has been designed using 0.18 um TSMC CMOS Technology with ±1.2 V supply voltages. The simulation of the proposed FDCCII and CMIA have been done in HSPICE LEVEL 49. Simulation results for the proposed CMIA are as follow: Voltage CMRR of 216 dB, voltage CMRR BW of 300 Hz. Intrinsic resistance of X-terminals is only 45 Ω and the power dissipation is 383.4 μW.  Most favourably, it shows a constant differential voltage gain BW of 18.1 MHz for variable gains (here ranging from 0 dB to 45.7 dB for example) removing the bottleneck of constant gain-BW product of Voltage mode circuits

    LFI 30 and 44 GHz receivers Back-End Modules

    Full text link
    The 30 and 44 GHz Back End Modules (BEM) for the Planck Low Frequency Instrument are broadband receivers (20% relative bandwidth) working at room temperature. The signals coming from the Front End Module are amplified, band pass filtered and finally converted to DC by a detector diode. Each receiver has two identical branches following the differential scheme of the Planck radiometers. The BEM design is based on MMIC Low Noise Amplifiers using GaAs P-HEMT devices, microstrip filters and Schottky diode detectors. Their manufacturing development has included elegant breadboard prototypes and finally qualification and flight model units. Electrical, mechanical and environmental tests were carried out for the characterization and verification of the manufactured BEMs. A description of the 30 and 44 GHz Back End Modules of Planck-LFI radiometers is given, with details of the tests done to determine their electrical and environmental performances. The electrical performances of the 30 and 44 GHz Back End Modules: frequency response, effective bandwidth, equivalent noise temperature, 1/f noise and linearity are presented

    Study of spacecraft transponder power amplifier Final report

    Get PDF
    Communications satellite wideband transponder feasibility study with direct RF to RF CONVERSION and TWT in re-entrant mod
    • …
    corecore