151 research outputs found

    Nonrigid reconstruction of 3D breast surfaces with a low-cost RGBD camera for surgical planning and aesthetic evaluation

    Get PDF
    Accounting for 26% of all new cancer cases worldwide, breast cancer remains the most common form of cancer in women. Although early breast cancer has a favourable long-term prognosis, roughly a third of patients suffer from a suboptimal aesthetic outcome despite breast conserving cancer treatment. Clinical-quality 3D modelling of the breast surface therefore assumes an increasingly important role in advancing treatment planning, prediction and evaluation of breast cosmesis. Yet, existing 3D torso scanners are expensive and either infrastructure-heavy or subject to motion artefacts. In this paper we employ a single consumer-grade RGBD camera with an ICP-based registration approach to jointly align all points from a sequence of depth images non-rigidly. Subtle body deformation due to postural sway and respiration is successfully mitigated leading to a higher geometric accuracy through regularised locally affine transformations. We present results from 6 clinical cases where our method compares well with the gold standard and outperforms a previous approach. We show that our method produces better reconstructions qualitatively by visual assessment and quantitatively by consistently obtaining lower landmark error scores and yielding more accurate breast volume estimates

    Joint Detection, Tracking and Mapping by Semantic Bundle Adjustment

    Full text link
    In this paper we propose a novel Semantic Bundle Ad-justment framework whereby known rigid stationary objects are detected while tracking the camera and mapping the en-vironment. The system builds on established tracking and mapping techniques to exploit incremental 3D reconstruc-tion in order to validate hypotheses on the presence and pose of sought objects. Then, detected objects are explic-itly taken into account for a global semantic optimization of both camera and object poses. Thus, unlike all systems proposed so far, our approach allows for solving jointly the detection and SLAM problems, so as to achieve object de-tection together with improved SLAM accuracy. 1

    Polylidar3D -- Fast Polygon Extraction from 3D Data

    Full text link
    Flat surfaces captured by 3D point clouds are often used for localization, mapping, and modeling. Dense point cloud processing has high computation and memory costs making low-dimensional representations of flat surfaces such as polygons desirable. We present Polylidar3D, a non-convex polygon extraction algorithm which takes as input unorganized 3D point clouds (e.g., LiDAR data), organized point clouds (e.g., range images), or user-provided meshes. Non-convex polygons represent flat surfaces in an environment with interior cutouts representing obstacles or holes. The Polylidar3D front-end transforms input data into a half-edge triangular mesh. This representation provides a common level of input data abstraction for subsequent back-end processing. The Polylidar3D back-end is composed of four core algorithms: mesh smoothing, dominant plane normal estimation, planar segment extraction, and finally polygon extraction. Polylidar3D is shown to be quite fast, making use of CPU multi-threading and GPU acceleration when available. We demonstrate Polylidar3D's versatility and speed with real-world datasets including aerial LiDAR point clouds for rooftop mapping, autonomous driving LiDAR point clouds for road surface detection, and RGBD cameras for indoor floor/wall detection. We also evaluate Polylidar3D on a challenging planar segmentation benchmark dataset. Results consistently show excellent speed and accuracy.Comment: 40 page

    3D Scene Reconstruction with Micro-Aerial Vehicles and Mobile Devices

    Full text link
    Scene reconstruction is the process of building an accurate geometric model of one\u27s environment from sensor data. We explore the problem of real-time, large-scale 3D scene reconstruction in indoor environments using small laser range-finders and low-cost RGB-D (color plus depth) cameras. We focus on computationally-constrained platforms such as micro-aerial vehicles (MAVs) and mobile devices. These platforms present a set of fundamental challenges - estimating the state and trajectory of the device as it moves within its environment and utilizing lightweight, dynamic data structures to hold the representation of the reconstructed scene. The system needs to be computationally and memory-efficient, so that it can run in real time, onboard the platform. In this work, we present three scene reconstruction systems. The first system uses a laser range-finder and operates onboard a quadrotor MAV. We address the issues of autonomous control, state estimation, path-planning, and teleoperation. We propose the multi-volume occupancy grid (MVOG) - a novel data structure for building 3D maps from laser data, which provides a compact, probabilistic scene representation. The second system uses an RGB-D camera to recover the 6-DoF trajectory of the platform by aligning sparse features observed in the current RGB-D image against a model of previously seen features. We discuss our work on camera calibration and the depth measurement model. We apply the system onboard an MAV to produce occupancy-based 3D maps, which we utilize for path-planning. Finally, we present our contributions to a scene reconstruction system for mobile devices with built-in depth sensing and motion-tracking capabilities. We demonstrate reconstructing and rendering a global mesh on the fly, using only the mobile device\u27s CPU, in very large (300 square meter) scenes, at a resolutions of 2-3cm. To achieve this, we divide the scene into spatial volumes indexed by a hash map. Each volume contains the truncated signed distance function for that area of space, as well as the mesh segment derived from the distance function. This approach allows us to focus computational and memory resources only in areas of the scene which are currently observed, as well as leverage parallelization techniques for multi-core processing

    Camera Tracking Using A Dense 3D Model

    Get PDF
    Abstract In this thesis we present a method for tracking a depth sensor and building a 3D model in real-time. The tracking will be done using the current estimated 3D model. We will show that this approach gives more accurate results and is more robust than the well-known KinectFusion approach. It will also be shown how to colourise the 3D model in real-time. In this work we will study different error metrics such as the projective point-to-point metric and projective point-to-plane metric. Also different norms will be evaluated to find out which gives the best result. We will also show how to represent a 3D model by using a so called signed distance function
    • …
    corecore