294 research outputs found

    Kajian motivasi ekstrinsik di antara Pelajar Lepasan Sijil dan Diploma Politeknik Jabatan Kejuruteraan Awam KUiTTHO

    Get PDF
    Kajian ini dijalankan untuk menyelidiki pengaruh dorongan keluarga, cara pengajaran pensyarah, pengaruh rakan sebaya dan kemudahan infrastruktur terhadap motivasi ekstrinsik bagi pelajar tahun tiga dan tahun empat lepasan sijil dan diploma politeknik Jabatan Kejuruteraan Awain Kolej Universiti Teknologi Tun Hussein Onn. Sampel kajian ini beijumlah 87 orang bagi pelajar lepasan sijil politeknik dan 38 orang bagi lepasan diploma politeknik. Data kajian telah diperolehi melalui borang soal selidik dan telah dianalisis menggunakan perisian SPSS (Statical Package For Sciences). Hasil kajian telah dipersembahkan dalam bentuk jadual dan histohgrapi. Analisis kajian mendapati bahawa kedua-dua kumpulan setuju bahawa faktor-faktor di atas memberi kesan kepada motivasi ekstrinsik mereka. Dengan kata lain faktpr-faktor tersebut penting dalam membentuk pelajar mencapai kecemerlangan akademik

    A robust detail preserving anisotropic diffusion for speckle reduction in ultrasound images

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Speckles in ultrasound imaging affect image quality and can make the post-processing difficult. Speckle reduction technologies have been employed for removing speckles for some time. One of the effective speckle reduction technologies is anisotropic diffusion. Anisotropic diffusion technology can remove the speckles effectively while preserving the edges of the image and thus has drawn great attention from image processing scientists. However, the proposed methods in the past have different disadvantages, such as being sensitive to the number of iterations or low capability of preserving the details of the ultrasound images. Thus a detail preserved anisotropic diffusion speckle reduction with less sensitive to the number of iterations is needed. This paper aims to develop this kind of technologies.</p> <p>Results</p> <p>In this paper, we propose a robust detail preserving anisotropic diffusion filter (RDPAD) for speckle reduction. In order to get robust diffusion, the proposed method integrates Tukey error norm function into the detail preserving anisotropic diffusion filter (DPAD) developed recently. The proposed method could prohibit over-diffusion and thus is less sensitive to the number of iterations</p> <p>Conclusions</p> <p>The proposed anisotropic diffusion can preserve the important structure information of the original image while reducing speckles. It is also less sensitive to the number of iterations. Experimental results on real ultrasound images show the effectiveness of the proposed anisotropic diffusion filter.</p

    Healthy kidney segmentation in the dce-mr images using a convolutional neural network and temporal signal characteristics

    Get PDF
    Quantification of renal perfusion based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) requires determination of signal intensity time courses in the region of renal parenchyma. Thus, selection of voxels representing the kidney must be accomplished with special care and constitutes one of the major technical limitations which hampers wider usage of this technique as a standard clinical routine. Manual segmentation of renal compartments—even if performed by experts—is a common source of decreased repeatability and reproducibility. In this paper, we present a processing framework for the automatic kidney segmentation in DCE-MR images. The framework consists of two stages. Firstly, kidney masks are generated using a convolutional neural network. Then, mask voxels are classified to one of three regions—cortex, medulla, and pelvis–based on DCE-MRI signal intensity time courses. The proposed approach was evaluated on a cohort of 10 healthy volunteers who underwent the DCE-MRI examination. MRI scanning was repeated on two time events within a 10-day interval. For semantic segmentation task we employed a classic U-Net architecture, whereas experiments on voxel classification were performed using three alternative algorithms—support vector machines, logistic regression and extreme gradient boosting trees, among which SVM produced the most accurate results. Both segmentation and classification steps were accomplished by a series of models, each trained separately for a given subject using the data from other participants only. The mean achieved accuracy of the whole kidney segmentation was 94% in terms of IoU coefficient. Cortex, medulla and pelvis were segmented with IoU ranging from 90 to 93% depending on the tissue and body side. The results were also validated by comparing image-derived perfusion parameters with ground truth measurements of glomerular filtration rate (GFR). The repeatability of GFR calculation, as assessed by the coefficient of variation was determined at the level of 14.5 and 17.5% for the left and right kidney, respectively and it improved relative to manual segmentation. Reproduciblity, in turn, was evaluated by measuring agreement between image-derived and iohexol-based GFR values. The estimated absolute mean differences were equal to 9.4 and 12.9 mL/min/1.73 m2 for scanning sessions 1 and 2 and the proposed automated segmentation method. The result for session 2 was comparable with manual segmentation, whereas for session 1 reproducibility in the automatic pipeline was weaker.publishedVersio

    A critical appraisal on wavelet based features from brain MR images for efficient characterization of ischemic stroke injuries

    Get PDF
    Ischemic stroke is a severe neuro disorder typically characterized by a block inside a blood vessel supplying blood to the brain. It remains the third leading cause for death, after heart attack and cancer. Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) were the vital major imaging techniques used for diagnosing this disorder. While the CT imaging can be used at the primary stage, MRI proves to be a standard aid for progressive diagnostic planning in the treatment of stroke injuries. Developing a fully automatic approach for lesion segmentation is a challenging issue due to the complex nature of the lesions structures. This research basically aims at examining the properties of such complex structures. It analyses the characteristics of the normal brain tissues and abnormal lesion structures using a three-level wavelet decomposition procedure. Four different wavelet functions namely daubechies, symlet, coiflet and de-meyer were applied to the different datasets and the resulting observations were examined based on their feature statistics obtained. Experiments indicate the feature statistics obtained from daubechies and de-meyer wavelets were able to clearly distinguish between the typical brain tissues and abnormal lesion structures
    • …
    corecore